
Computer assisted image analysis I

Linus Falk

June 2, 2023

Contents
1 Image enhancement 2

2 Intensity transfer function 3

3 Intensity histogram and histogram equalization 4

4 Summary Image arithmetic 5

5 Image pre-processing/enhancement 6

6 Frequency domain filtering 8

7 Comparing linear and non-linear filters 9

8 Image filtering in frequency domain 9

9 Fourier transform in 2D 12

10 Fourier analysis of sampling 13

11 Image coding and compression 17

12 Segmentation 20

13 Objects, description and feature extraction 26

14 Classification 31

15 Classification with neural networks 35

1

›

Lecture 2: Image arithmetic
tuesday 01 nov 10:15

1 Image enhancement
Enhance part of an image in some way. Transform an image into a new im-
age. Create a better. restore information, reduce noise. Enhance certain de-
tails, edges etc. Just look better. We don’t increase the information. Can be
performed in spatial domain. Point process : pixel base. Filter works with
neighborhood Another way is in frequency domain. The chain of image analysis
process. The first part today. Pre processing enhancement. We must start
by understanding the problem otherwise it hard to make decisions along the
chain/pipeline

• image arithmetic

• intensity transfer function

• histogram and histogram equalization

Image arithmetic
we do arithmetic with images. Position in matrix/image operator position in
image.

• standard operation + - / *

• logic operator AND OR XOR

Pitfalls could be add and divide could be outside range of 0-255 for example.
Need to normalize but needs to be done before we do the operation. otherwise
we might have destroyed information. Bit depth important.

Useful way is to truncate the image.
We can subtract images. Leaf example and chessboard example. Binary or

grey scale images.
Arithmetic useful when parts of images should be excluded for example.
Logical operator in binary images, pixel example in slides. Nothing strange.

But good method to add or remove certain objects in binary images.

Noise reduction
using mean or median, useful in microscopy and night pictures/astronomy

I =
1

N

∑
n=1...n

Ik (1)

Reduction of noise by using the mean of the pixels by using images of the
same scene. Good in microscopy and astronomy were the scene doesn’t change.

2

Application
• Image arithmetic useful in medication/diagnosis. Subtracting picture be-

fore contrast fluid with the picture after to get en enhancement/ better
picture of the blood vessels.

• change or motion in a scene. Persons in scene before and after example.

• illumination correction by subtraction background image. Max or median
of the pixel intensities.

2 Intensity transfer function
g(x, y) = Tf(x, y) (2)

• linear (neutral negative, contrast, brightness)

• smooth, gamma log

• arbitrary

old value on x axis new on y axis.

The negative transformation
the inverse

g(x, y) = max− f(x, y) (3)

An example 255 254 253
125 130 110
4 3 0

 ⇒

 0 1 2
130 125 145
251 252 255

 (4)

Useful in medical image processing. Retina example. Easier to distinguish
brighter lines/object. Sometimes the opposite.

Brightness
If we add a constant to the image it becomes brighter. Subtracting will make
it darker. C positive integer or

g(x, y) = f(x, y) + C (5)

Contrast
By multiplying the image we spread out the information and increases the con-
trast

g(x, y) = f(x, y)× C,C > 1 (6)

if C < 1 reduce the contrast.

3

Gamma transformation
g(x, y) = C × f(x, y)γ (7)

Computer monitors γ ≈ 2.2

• Computer monitors γ ≈ 2.2

• eyes ≈ 0.45

• microscopes ≈ 1

microscopes should have 1. 1 to 1 ratio. Lower gamma brighter image.
Gamma high, darker.

Log transformation
Used to visualize dark regions of an image. To display the Fourier spectrum.
Enhance the brighter regions.

g(x, y) = Clog(1 + f(x, y)) (8)

arbitrary
only one output per input. Possibly not continuous.

3 Intensity histogram and histogram equalization
Gray scale histogram show how many pixels at each intensity level.

Normalized histogram: normalized by the total number of pixels in the im-
age. Histogram show intensity distribution. How many pixels of certain inten-
sity.

Intensity histogram doesn’t say anything about the spatial distribution of
pixel intensities. Images with the same pixels histogram can be totally different.

What do we use them for?

• Thresholding, intensity threshold. Decide intensity all above or under is
background. Works with bi-modal histogram

• analyze the brightness and contrast

• histogram equalization

Analyze the brightness. See the transformation "chopping" the histogram.
Could see that information might be missing. Low contrast = compressed his-
togram. When increasing we stretch the histogram. Transfer function slope.

histogram equalization
create an histogram with evenly distribution grey levels. for visual contrast
enhancement. The goal is to flatten the histogram, produce the most even
histogram.

4

Cumulative histogram
sum the number of pixels along the x axis intensity. Steep slope. Intensely
populated parts of the histogram. Flat slope: sparsely populated parts of the
histogram. Strive to a even slope.

example CDF
Multiplying the CDF value with number of gray levels -1 gives the intensity
transfer function. We can the map the new gray level values into the number
of pixels. it possible that two bins will be mapped to the same new position.

look at this again

local histogram equalization
useful when only parts of image need to be enhanced

Conclusion Image arithmetic
• useful when histogram narrow

• drawback, amplifies noise, can produce unrealistic transformation

• information can be lost. no new information gained.

• Not invertible, usually destructive.

Usefulness depends on the amount of different intensities.

Histogram matching
Want to mimic histogram of another image. Compute the histograms and CDF
for each image. For each gray level G1

[
0 255

]
find graylevel G2 so F1(G1) =

F2(G2) The matching function: M(G1) = G2. Not always the best solution
either.

4 Summary Image arithmetic
• Many common tasks can be described by image arithmetic

• histogram eq useful for visualization

• watch out for information leaks

to think about

• relation between arithmetic and linear transfer function

• what can we know of an image from the histogram

• 8-bit image A, how will it look like B = 255*(A+1)

• conclusion if first last column really high?

• better resolution combining multiple images of same sample?

›

5

Lecture 3: Filtering part I
tuesday 08 nov 15:15

This lecture covers filtering and pre-processing, smoothing filters and edge en-
hancing. the second art covers filtering in Fourier domain and linear vs non-
linear filters.

5 Image pre-processing/enhancement
We want to create a better image in some sense. In visual inspection:

• fir Visual inspection

• change contrast brightness

• subjective improvements

Important image information doesn’t increase but can be better visualized
In automated analysis

• restore an image, reduce noise

• enhance certain object, what we look for, dots, edges etc

Difference between point wise operations and filtering is that we use infor-
mation from more neighbor pixels.

• local neighborhood

– linear filter + filtering in freq domain

– Non linear filter

• linear and non linear filter is basis for conv.nn

Spatial filtering
Make some transformation based on the neighborhood of x and y. Typically
move the filter row by row from top to bottom.

g(x, y) = T (f()x, y) (9)

Neighborhood, filter kernel, windowing function: the same thing. Inside we find
weights.

Mean filter
Smoothing of sharp variation in intensity of the image. We start top left and
move pixel by pixel through the row with the window function with the weight 1

N
with N is the number of pixels in the window function. What do we do with the
edges of the image? MATALB set everything outside the image is set to zero.
So the edges becomes darker. Alternative is to reduce the window. Another
alternative is to mirror the image but is computational heavy and introduces
"false" information.

6

The window
The local neighborhood. The window is often square or disc shaped when be-
coming bigger. Increasing the size of the window makes for a smoother image.
So only the low frequency variations in the image are kept, while high fre-
quency variations is removed. The filter allays sums to one.

Gauss filtering
the Gaussian distribution got the area 1 under the curve and we can use this
for filtering.

• Smoothing, reduces noise

• Less smoothing then mean but blur details less

• original intensity will be kept in a uniform part of the image

Gaussian filtering can be used for shading correction or remove/ decrease
background variation. Take an input image, use Gaussian filtering, take the
filtered image and subtract or divide from the original.

Edge enhancing filters
Enhances variations/edges, an edge can be seen as the same as gradient.

Example: Laplace filter −1 −1 −1
−1 8 −1
−1 −1 −1

 (10)

The reason is if we want to find edges we want an output were we have
changes not were the image is uniform. The filter enhance changes and uniform
places are set to zero. Laplace filter, the filter sums up to zero.

Laplacian operator
Linear differential operator approximating the second derivative Produces only
magnitudes and no direction information. The may result in two edges if there
are a thin line. It is rather noise sensitive. 2nd derivative = line detector. The
crisp filter, a visually sharper image can be obtained by adding the original
image and the filtered image. This can also be obtained by adding 1 to the
central weight of the filter.

Input

 1

Laplace

 −1
−1 8 −1

−1

Crisp

 −1
−1 9 −1

−1

 (11)

These are linear filter so we can do it one step.

7

Sobel operator
Approximation of the first derivative. Finds edges (gradients) in different direc-
tions. Read more about this

Example: Sobel operators1 0 −1
2 0 −2
1 0 −1

−1 0 1
−2 0 2
−1 0 1

 (12)

flip filter to find different edges.

DoG: Differences of Gaussian
By combining smoothing filters of different size, edges can be detected. Think
the first filter remove some of the high, the new remove more of them. And if
we subtract the filtered images we get those higher frequency content.

6 Frequency domain filtering
Frequency = rate of change. High freq. corresponds to sharp edges, fine detail
and noise. Low freq. correspond to smoother and slower changes.

Fourier transform: Functions that are not periodic bit with finite area under
a curve, such as an image can be expressed as the integral of sines and cosines of
different frequencies and weights. Representation using Fourier series or trans-
forms allow for complete recovery of the original function. Fourier transform
are used for:

• To reduce periodic noise

• To smooth or low pass

• To enhance details, high pass and band pass

• To save time convolution in time domain = multiplication in frequency
domain.

The 2D discrete Fourier transform, and to get back using the inverse trans-
form.

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2jπ(ux/M+vy/N)

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F(u, v)ej2π(ux/M+vy/N)

(13)

At the center of the image we got the mean value of the image. Higher
frequency moving out from the center. Some lines can appear in the transformed
image (Fourier spectra). These line show were lot of differences/edges changes
are present. Repeating pattern can become clear to see.

8

Some differences to continuous FT
DFT works on finite images with M × M pixels. → Frequency smoothing
DFT uses discrete sampled images i.e. pixels → aliasing DFT assumes peri-
odic boundary conditions → Centering, edge effects. Good thing to have when
capture image to have less important information in the edges.

Convolution
DFT(f*g) = DFT(f) × DFT(g) much faster with multiplication in freq. domain.

Smoothing in spatial domain is same as low pass filtering in frequency do-
main.

Convolution N2
1N

2
2 operations. DFT: 4 N2Log2 N

Use convolution for small convolving functions. DFT for large convolving
functions.

Noise
All images contains noise. It can be noise from sensors, transmission, storage.
Spatially independent noise can be removed by smoothing. Periodic noise is
better removed in frequency domain.

Relationship between convolution and correlation
Convolution is equivalent to correlation if you rotate the convolution kernel by
180 degrees. Compute the correlation of the template image with the original
image by rotating the template image by 180 degrees and then using fft based
convolution (multiplication).

7 Comparing linear and non-linear filters
Linear filters (mean, Gauss, Sobel) we can add this filter and get the same
result. filter(f1 + f2) = filter(f1) + filter(f2). Negative values should not be set
to zero if this shall work. Linear filter are also shift invariant: filter(shift(f)) =
shift(filter(f)). Same behavior regardless of pixel location. Linear filter have a
correspondence in frequency domain. Linear filters are often separable, can be
written as a product of two or more simple filters. Typically a 2D convolution
operation can be separated into two 1D operations. This reduces computational
cost.

Non linear filters like median, min and max and other morphological filters
DO NOT fulfill this properties

›

Lecture 4: Filtering part II
wednesday 09 nov 15:15

8 Image filtering in frequency domain
Summary, Virtually all filtering is local neighborhood operation. Convolution
= linear and shift invariant filters, mean filter Gaussian weighted filter , kernel.
Many non linear filter exist also.

9

Linear neighborhood operation
For each pixel multiply the values in the neighborhood with the corresponding
weights then sum. Is convolution as long at is symmetric. When not its a cross
correlation.

a filter is symmetric if we flip it along x or y axis.

Correlation and convolution
• Two fundamental linear filtering operation

• Correlation: move a filter mask compute and sum

• Convolution the same as correlation but first rotate filter by 180 degrees.

Example: correlation

Signal:
0 0 0 0 0 0 1 0 0 0 0 0 0
Filter:
321
Result Correlation:
0 0 0 0 1 2 3 0 0 0 0
Result Convolution:
0 0 0 0 3 2 1 0 0 0 0

• Convolving a function with a unit impulse yields a copy. Correla-
tion we flip it.

Convolution properties:
• Linear

– Scaling invariant
– Distributive

• time invariant

• Commutative

• Associative

Today’s lecture:
• The Fourier transform

– Discrete Fourier Transform
– Fourier transform in 2D
– Fast Fourier Transform

• signing filters in Fourier domain

10

– Filtering out structured noise

• Sampling aliasing and interpolation.

All periodic functions can be expressed as weighted sum of trigonometric
functions. Even functions that are not periodic van be expressed as an integral
of sines and cosines.

Euler’s formula:

eiδ = cosωδ + isinωδ, ω = 2πf (14)

Fourier transform

F (ω) =

∫ ∞

−∞
f(x)eiωx, dx (15)

Aeiωx +A∗e−iωx (16)

therefore we need negative frequencies,

For real valued signal:

• At frequency ω we have weight A

• At frequency -ω we have weight A ∗

F (−ω) = F ∗(ω) (17)

We can go back with the inverse Fourier transform

f(x) =
1

2π

∫ ∞

−∞
F (ω)eiωx dω (18)

Add Image of of transform pairs here
Different properties: scaling, addition translation and convolution. Convo-

lution in frequency domain is multiplication in frequency domain, very useful..
Sampling, Continuous function, sampling function and sampled function ex-

ample.
Examples of DFT
DFT

F [k] =

N−1∑
n=0

f [n]e−i 2π
N kn (19)

k is the spatial frequency, k ∈
[
0 , N − 1

]
, ω = 2πk/n, ω ∈ [0, 2π)

Discrete Fourier Transform
F[k] is defined on a limited domain (N samples) these samples are assumed to
repeat periodically

Question: Why does the DFT only have positive freq?
Its periodic, we store one copy of it because it symmetric

F (k) =

N−1∑
n=0

f(n)e−i 2π
N 2n (20)

11

The exponential cancel out, become 1. and if we sum it and divide it by N we
get the average.

9 Fourier transform in 2D
Simple, the FT is separable

• perform transform x-axis

• perform transform along y-axis

• perform ...

2D transform pairs examples:
Taking the transform result in same size but the result is complex so we look

at the magnitude. The middle is the average. The Fourier transform gives us a
direct hint of the image. The frequency content in different axis.

Sine like pattern gives dots in the Fourier transform, showing the frequency
clearly.

We can also visualize the angle/phase. But doesn’t intuitively say much.
Reconstructing from only magnitude doesn’t give much, the phase give some
but both needed for reconstruct.

Computing the DFT
• for an image with N pixels the DFT contains N elements

• each element of the DFT can be m finish when slides are uploaded

• a naive approach need N2

Fast Fourier Transform
• clever algorithm to compute Fourier transform

• runs in O(NlogN) time

• works because of symmetry properties

Convolution in Fourier domain
The convolution prop in freq domain. This we can calculate the convolution
through

• F = FFT(f)

• H = FFT(h)

• G = G × H

• g = IFFT(G)

Convolution is operation of O(MN) Through the FFT O(NlogN) if M larger
than NlogN then its of more practical use. Use depend on size of filter.

We don’t lose information going back and forth the freq domain. If no
numerical/double/float error.

12

Low pass filtering
Linear smoothing filter are all low pass filter. Mean filter and Gauss filter. Low
pass means low freq are not altered and high are attenuated. In the ideal case.

Highpass filtering
Opposite of lowpass, the unsharp mask and Laplace are highpass filter

Bandpass filter
You can chose to keep one passband of frequencies to keep and filter the other.

Rippling pillbox gives ringing. Image example.
Gaussian filter has much smoother properties and doesn’t give the same kind

of ringing.

10 Fourier analysis of sampling

F (ω) =

∫ ∞

−∞
f(x)e−iωx dx (21)

If we get a repeated copy we can reconstruct the sampled signal. But if we
get aliasing, colliding repeating part we cant. This is caused by not sampling in
high enough freq.

We cut out the repeating part with a box function in frequency domain(sinc
in spatial/time domain)

Nyquist theorem: if you want to reconstruct a signal you need to sample 2
times higher than the highest frequency content.

How do we know that the captured image is band limited?

Lecture 5: Spectral dimension
wednesday 16 nov 15:15

Today we will discuss how we represent spectral information, w in the general
expression of an image : B = F(x,y,z,t,w). Each of the pixels in an image con-
tains measurements of the signal intensity in a certain part of the EM spectrum.

dimension xyz, time t, w wavelength color. Time beating heart example.
If only one dimension signal processing

Color fundamentals
We can divide white light into seven visible colors. These are: red, orange,
yellow, blue, indigo and violet.

Electromagnetic radiation
When designing a imaging system we select one or several spectral windows of
the electromagnetic radiation spectrum. Example of spectrum. In the case of
grey-scale images we have one window.

13

Digital cameras as Detector
The digital camera sensor resembles the human eye in many ways. It is sensitive
to three colors. In the case of CCD sensor chip they are differentiated by a Bayer
filter pattern. These values are then interpolated to achieve a full RGB colored
image.

Image formation
The image we quire from the imaging system depends on the spectral properties
of these things:

• the illumination - this is the light source, the sun, lamp, flash etc.

• object/motive/scene - the light is reflected, absorbed or transmitted

• the detector - the sensor or eye

Color perception
Color is an interpretation of the brain of the EM radiation of the "visual spec-
trum". The detectors in our eyes consist of rods and cones. Cones are the ones
that are sensitive to color.

The different part/objects in an image got its own spectrum, this we can
measure with a spectrometer.

Could be studied as physiological topic, perceived different by different
people.

Why color images?
With our three spectral channels in our eyes we can create a realistic represen-
tation of the spectral environment as we perceive it

Light properties
Illumination

• Achromatic light - White or uncolored light, all visual wavelengths in
complete mix

• Chromatic light - colored light

• Monochromatic light - single wavelength (laser)

Reflection

• colors we see are often mixes of wavelengths

• The wavelength that dominates decides the "color tone" or hue

• if equal amount reflected an object appears to be grey

14

color space representation
RGB space
In the RGB (red green red) space each pixel is described by the intensities of
these colors it contains. The color of a pixel is defined by the position in the
RGB cube where (0,0,0) is black and (1,1,1) is white.

CMYK space
In the CMYK space each pixel is describes how much pigment of each of the
primary colors that should be used at printing. CMYK is subtractive and
therefore the inverse of the RGB space.

RGB color images

Mixing light means that the more color we add the lighter/whiter image
we get.

• R + G = Y

• R+G+B = white

RGB color model
The range is

[
0, 1

]
for each primary color. RGB image by three grey-level

images. The number of bits for each pixel in RGB is the pixel depth

color spaces: RGB/CMY
This is a hardware oriented color spaces, the RGB is closer in terms of physio-
logical similarities (we got three types of cones) than the psychological.

The diagonal in the "color box" is grey value (64,64,64). 0 to 1 as scale
often used in these cases instead of 0 256.

color mixing
• C + M + Y = black

• R + G + B = white

In printing "business" cmyk is subtractive, adding gives darker. C + M
+ Y = K (black) these color space doesn’t match out eyes very good

Hue saturation and lightness, HSL
This is a user oriented color space, here the we have intensity decoupled from
color information.

• Hue, angle

15

• Saturation, radius

• Value, height

This color space makes it easier to compare hue under varying lightning
conditions of the object.

Longer out on the disc more saturation, lightness up in the "cone" and
hue by rotating around the disc. We get a jump from violet to red in
this color space. 0-360 degrees.

Color spaces: CIE L*a*b or CIELAB
This is the most complete color space and is specified by CIE in 1976. It was
created to represent all colors visible for the human eye. Used as reference.
The goal is to be perceptually uniform so that equal distance should have equal
perceptual difference.

Noise in color images
There is Gaussian noise in all three color channels (RGB). If compared with the
HSL representation there is more noise in the Hue and Saturation channels.

Grey level methods on color images
We can use in general all image processing techniques from grey level editing
on color images. We can do this by using them on each color channel or for
example only the intensity channel. No right or wrong but different results. Be
careful when using HSL, circularity in hue! One might get color artifacts if the
H channel is filtered.

Using histogram equalization on all channels in HSL can give odd result. If
used on the L channel we get the contrast enhancement we look for.

Filtering means creating new values. New color values from filtering will
create artifacts. Side notes: The hue for skin is the same regardless of
you’re from Africa, Asia, north Europe etc. Made it possible to identify
people in a image looking at the skin of people. Histogram equalization
in L channel can give better contrast and be useful.

Segmentation based on Hue
We can set an interval for the Hue around a color and get that colored segmented
in the image.

Choosing a colors space
A color space can be either close to the hardware or the application. The RGB
space is close to the output from a CCD sensor chip. Using decoupled grey-
scales can be very useful in image processing making it possible to use different

16

grey-scale methods intuitively. Some transformations can be difficult in some
color spaces, (read more), singularities may exist. RGB is the color space used
for presenting images on display devices.

Pseudo-coloring
The human eye can distinguish between 30 different grey levels but up to 350k
different colors. Using pseudo-coloring can make small changes in intensity more
apparent for the human eye to see.

The human eye is better at seeing differences in color than in intensity.

Each intensity is mapped into a look up table to give a color. There are
different color maps in MATLAB: Jet, HSV, Hot etc. Small intenisty
changes are easier to see if mapping to color. But remember its easy to
trick the brain with colors.
Hue - wavelength, Lightness can be seen as gray-scale. Saturation dif-
ference: think of painting in oil and pencils or aquarel

11 Image coding and compression
Data and information is not the same. Data is the means with which informa-
tion is expressed. So the amount of data can be much more than the information.
This extra or redundant data does not provide us with more information and
with image coding or compression we can reduce this waste of storage while
keeping the information.

Image coding: this is how the image data can be represented
Image compression We use to reduce the amount of data that is required

to represent the image.

Image compression categories
• Reversible (Lossless)

The image is identical to to image before compression. This is often re-
quired when doing image medical interpretations or required in image
analysis applications. The compression ratio is typically ≈ 2 to 10 times

• Non-reversible (lossy) With this compression we lose information. This
compression is often used in image communication in devices like compact
cameras, video or on the internet. Here the important part is that the
image look "nice". The ratio of compression is often 10-30 times.

Decompression needed to "look" at the image again, this takes also time
and should be considered.

17

Objective measures of image quality

• Absolute error

e(x, y) = f̂(x, y)− f(x, y) (22)

• Total error

etot =

M−1∑
x=0

N−1∑
y=0

(f̂(x, y)− f(x, y)) (23)

• Root mean square error RMSE

eRMS =
1

MN

√√√√M−1∑
x=0

N−1∑
y=0

(f̂(x, y)− f(x, y))2 (24)

f̂ is the compressed image. Most common to use rms error.

Problems measuring quality
THe perception of the image quality is not always the same as the objective
image quality. We can solve this problem by letting a number of persons rate
the image on some sort of scale. The result will be a subjective measure of how
we perceive the quality (fidelity).

Different types of redundancy
• Coding redundancy, some grey levels more common

Basic idea is that different grey level occur with different probability. We
use therefore a shorter code word for the common grey levels, variable
code length

• interpixel redundancy, same grey level cover a large area
Adjacent pixels are often correlated, the value of neighboring pixels of
observed pixel can often be predicted from observed pixel.

• Psycho-visual redundancy, we can only resolve ≈32 grey level
If the image is only used for visual observation, much information can be
removed without changing the the visual quality. This process is often
irreversible.

Looking at the histogram can be useful for coding redundancy.

18

Huffman coding - Coding redundancy
This type of code is completely reversible/lossless. The table for translation is
stored with the coded image. We get a resulting code that is unambiguous. The
Hoffman code doesn’t take correlation between adjacent pixels into consideration
See example in lecture slides

Run-length encoding - interpixel redundancy
The code words are made up of a pair (g, l) where g is the grey-level and l is the
number of pixels with that grey-level (length or "run"). The code is calculated
row by row. An example of use if in old fax machines. This method is reversible

Difference coding - interpixel redundancy
In this method we keep the first pixel value and then convert the rest as the
difference of the previous pixel. This code is calculated row by row and is
reversible.

result in low numbers and can be saved with small number of bits.

Transform coding - Psycho visual
In steps: subimage (size N×N) , decomposition, transformation (Fourier, cosine
etc.), quantization (compression achieved in this step) and coding.

JPEG based on cosine transform, separates RGB to HSL channels give
blocking and ringing artifact. Run lenght coding. JPEG2000 based on
wavelettransform. "more sophisticated"

File formats - Lossless
• TIFF, flexible format that support upto 16bit/pixel in the 4 channels

RGB + transparency read more about bits per pixel. Tiff uses several
different compression methods, Huffman and LZW

• GIF, support of 8bits/pixel in 1 channel, that is 256 colors. LZW com-
pression and support animations

• PNG, support 16 bits/pixel in 4 channels. Uses deflate compression
LZW and Huffman. Is good when interpixel redundancy is present ?

A tiff image can have transparent areas

19

Vector-based file formats
This format uses predefined shapes

• PS, PostScript page description format to send text documents to print-
ers.

• EPS, Encapsulated PostScript can embeds raster images internally
using TIFF format

• PDF widely used for document... support embedding of fonts and raster/bitmap
images. But bevare choice of coding since both lossy and lossless compres-
sion is supported.

• SVG. Scalable Vector Graphics is based on XML and support both
static and dynamic content. Supported by the majority of web browsers.

How to choose file format
In image analysis are lossless formats vital and TIFF is often used. For use on
the internet JPEG for photos, PNG for illustrations, GIF for smaller animations
and SVG for logos etc.

Lecture 6: Image segmentation
thursday 17 nov 13:15

12 Segmentation
This lecture will cover image segmentation, how we separate objects in images
from the background.

• what is image segmentation

• intensity threshold

• edge-based thresholding

• region based thresholding

• template matching for segmentation

what is image segmentation
We divide images into parts : regions/objects. This corresponds to what we are
interested in. Two different types

semantic all pixels is in a class, what is foreground or background
instance object labeling. know who the person in the image is
Segmentation is also finding patterns or edges between patterns.

20

Why segmentation
Its one of the first step, like we want to count or find things in images, find how
large size of something. Find were things are positioned, in front or behind etc.
First step in training AI applications.

• counting number of object of certain type

• measure geometric objects, area

• study properties of objects, intensity or texture for example

• study what between relationships different objects

Segmentation is difficult
There is no universal solution. What can we see in the image and how can we use
of it. How can we make it easier to solve the problem. Avoid illumination that
are uneven for example. Simplify by using proper background and illumination.
Important to think about what can be done before starting the image analysis
and before image acquisition.

Classical approach to find first instances. The combination of solutions is
often the best.

It is an ill posed problem: What question do we want to answer. Not always
straightforward.

Grey-level intensity thresholding
• Global, classifies each pixel as object or background depending on a thresh-

old level T.

• local or adaptive, T depends on local neighborhood

• hysteresis, combination of results from 2 thresholds.

Histogram is useful to find T when there are distinct peaks. If illumination is
less uniform it might fail. There will not be two distinct peaks. Is the histogram
uniform or don’t have distinct peaks we cant use threshold segmentation. Pre
processing is therefore important when doing segmentation.

Example: Thresholding algorithm

1. Choose initial threshold T0 (as the mean pixel intensity of image)

2. define f(x,y) > T0 as background and f(x,y) < T0 as foreground.

3. calculate mean intensity for µbg background and foreground µfg

4. set next threshold Ti = (µbg + µfg)/2

5. repeat 2 - 4 until stopping critera: Ti = Ti − 1 is fulfilled.

21

Otsu’s
Widely used method. Minimize within class variance which is equivalent to
maximize the between class variance.

σ2
between(t) = Pbg(t)P (fg(t)(µbg − µfg)

2 (25)

where Pbg is the probability that a pixel belong to the background, at thresh-
old t, and µbg is the mean value of all background pixels. choose the t that
maximizes σ2

between

Other approaches
Manually choose a T-level on training set. If imagining conditions are fixed.
Other way is to priori knowledge. if we know how many pixels that the object
should be we can look for that many even though the illumination is bad.

adaptive local thresholding
Compute a local threshold, compute a T or each pixel by filtering. Use threshold
on regions of the image and then combine the results. We must choose size of
regions and there is risk of artifact along the borders. Doesn’t always work since
there could be regions without objects.

Adaptive, Its useful when illumination is not even. It is based on the local
neighborhood of the pixel. This is often equivalent to preprocessing followed
with thresholding

Hysteresis thresholding
We specify two intervals that we know our object is in. certain above and
under. Thigh and Tlow. Classify pixels with brighter than Thigh to definitively
object and darker then Tlow definitively background. Between these values are
considers uncertain. In the last step we classify uncertain pixels as objects if
they are connected to a pixel that is label definitively object.

refeined alternative definitions
Divide instances. Extract measurement for each instances. We have found the
coins but now we want to know which type there are as an example. We need
to decide how we define an object.

connected component labeling
To identify objects we can use connected component labeling.

22

Component labeling

First pass

• iterate throuhg each element row by row then column

• if the element is not the background

– get neighboring elements of current element

– if there are non, set unique label to current element.

– otherwise find neighbor with smallest label and assign current
element

– store the equivalence between neighboring labels.

second pass

• iterate through element on data row by row then by column

• if element not background, relabel the element with lowest equiv-
alent label

– relabel the element with the lowest equivalent label

Definition:

• 4 neighboring a side connected to another pixel that not is back-
ground.

• 8 neighboring. with connected to another pixel by the corners also

if we say there is 4 connection in object, then the background is 8-connect.
which one we use depend on what object we are looking for. Very thin object is
better to use 8-connectivity. Only look at them that could have been changed.

Region based segmentation
Region splitting Begin with setting up the criteria for what a uniform area
is, example: mean variance etc. Proceed with splitting the image, check each
subimage if it is uniform, if not continue splitting this piece into new pieces.
Then compare regions with neighboring regions and merge if uniform. Repeat
this until noting happens.

Region growing find starting point include neighboring pixels with similar
features. Continue until all pixels bin included with one type of starting pixel.
Problem can be to determine what these features are.

watershed segmentation
Think of image like a landscape topography. Could be used on raw images or
prepossessed like edge enhanced images etc.

Any image can be shown as a landscape, use the intensity as "height". If we
let a drop of water is flowing down this landscape from above, The other way
around is filling it from below and see where it goes.

23

We give local minimum drilled holes and then start filling, assign with a
label when the water reach each label. The inverted image can be useful after
using the method also two view the "mountains"

Distance transform
If we input a binary image we set the objects to 1 and the background to 0. The
output would be in each pixel of the background is the distance to the closest
object. The output is like a "chessboard" but note that the distance put the
weight equal to straight and diagonal steps. After transformation the object get
the value 0.

Algorithm for distance transform

Distance transform: cityblock

• p = current pixel in image

• g1 − g4 = neighbor pixels

• w1 −W4 weight according to choice of metric

1. We set object pixels to 0 and background to max for example 255

2. Forward pass, from start (0,0) position to the max coordinates.
if p > 0, p = min(gi + wi), i = 1,2,3,4

3. Backward pass, from max coordinates to (0,0)
if p > 0, p = min (p, min(gi + wi)), i = 1,2,3,4 (setting the pixel
to do min of ...)

Depending on the approximation of the Euclidean distance the weight
may have different values. The kernel may have different shapes. The
example above is the simplest most commonly used.
Example in old zoom lecture on studium.
Some of these methods approximate a circle differently, chessboard and
cityblock (above) not so good.

Distance transform usage
Used to find the shortest path between two points in the image. To do this
we generate distance transform of the image and then go from A to B in the
direction of the the steepest gradient. It can also be used to find the radius
of object that are round. Here we find the maximum value of the distance
transform which equals the radius. Assumed no normalization is used.

When we have overlapping it might not show up as two object. But with if
knowing if the object is round we can segment it using watershed method.

24

Watershed problem and strategies
Each local minima results in separate region. Can give many many regions.
Using smoothing filters can be used to avoid this over segmentation. You can
use morphological transformations. Or set threshold to what a true valley is.

Seeded watershed
One way is to start from all local minima (discussed before) or using seeds Water
shedding can only start from regions we have classified as appropriate.

Hough transform
To find lines. A pixel van have infinitly many lines

yi = axi + b

→ b = −axi − y
(26)

This corresponds to a line in parameter space. Having two pixels we get an
intersection in parameter space. read more in book or wiki

We use cosine or sines to represent line when the slope of the line approaches
infinity.

Segmentation by template
Use the template as the filter and move it over the image and calculate the
correlation. Rotating the template etc to find object with different orientation.
It is computational heavy to look for all possible transformation, rotations etc.
Can be difficult if size varies also.

post processing
Opening and closing. With different sizes of filter

• erosion followed by dilation
Break necks and smooth contours.

• dilation followed with erosion
Smooth contours and fuses breaks, eliminates holes

Summary
• Often the most difficult task to solve in image analysis.

• No universal solution exist

• Think what are the key things that makes me see the object, edges etc.

• Optimize data collection, what can we do about background lightning etc.

• Pre and post process can improve results.

25

Lecture 7: Objects, description and feature extraction
monday 21 nov 10:15

13 Objects, description and feature extraction
After segmentation we have to represent, describe the object in the image. This
lecture is covering these topics.

It is useful to know that if it’s possible to "stain" what we are trying to cap-
ture with our image analysis before the image is taken with some sensor/device
it can save a lot of time and make it easier to describe an object in the image
analysis. For example contrast fluids in MRI scans, easier to see blood flow.

This lecture covers generic methods, as how to measure shape of objects.
Not finding special features like how many spots an object got etc.

Representation and description
After we have segmented our image we want to represent object so that we can
describe them. Two types.

• External (boundary):

– Representation using polygons to represent the boundary for exam-
ple.

– Description, what is the circumference of this polygon

• Internal (regional):

– Representation of the pixels inside the object

– Description: what is the average color/intensity for example inside
this object.

Representation of the object is an encoding of the object, truthful or an
approximation after segmentation. The descriptor of the the object is only an
aspect of the object but could be used for classification. Careful and consider
invariance due to noise, translation and/or rotation. Count of dots/spots on
an object can be a descriptor for example, can be used for classification. One
feature is maybe not enough.

Shape representation
It is sometimes necessary to represent an object in an less complex or more intu-
itive way. We can use simple descriptions like shapes instead, circles, rectangles
to represent the to object. By using the boundary or segments of it we can also
represent it, the boundary could be smoother to for a simpler representation.
Dividing the objects into region or part is also useful sometimes. Skeleton is
another way, described later.

Remember to consider invariance because of scale, rotation etc. But it is
sometimes important to be aware of the rotation of the object before doing
analysis, for example the letter p and d.

26

Boundary representation: Polygonal approximation
A common way to approximate or simplify the shape of an object is to make
a polygon representation of the boundary. For closed boundaries the approxi-
mation becomes exact when the number of segments of the polygons is equal
to the number of points we got in the boundary. The goal of this method is to
capture the essence, the important shape of the object. But beware that this
approximation can become a time consuming iterative process. A intuitive way
to understand this method is to think of a rubber band being forced to the shape
of the object. The interesting points is were this "band" is "breaking"/changes
direction.

Algorithm: Merging techniques

1. Walk around the boundary and fit a least square error line to points
until an error threshold is exceeded

2. Start a new line, an begin from 1 again

3. When start point is reached stop. The intersections of adjacent
lines are the vertices of the polygon representation of the shape.

Algorithm: Splitting techniques

1. Start with an initial guess along the boundary

2. Calculate the orthogonal distance from the line to all points in the
boundary shape.

3. If max distance > a threshold value, create a new vertex there.

4. Repeat until no point exceed the criterion threshold.

Boundary representation: signatures
Another way to represent a boundary is to use signatures. An example is using a
center that we rotate around and plot the distance to the boundary from 0 → 2π.
This becomes a 1D representation of a 2D boundary. We can implement this
in different ways. As the example before or as an angle between the tangent in
each point and a reference line (horizontal line for example). The histogram of
this is called a slope density function. This representation is independent of
translation but not to rotation and scaling. A problem with the first method is
that we need to select starting point. One tips is to select a unique point along
the longest axis of the image (major axis). Regarding scale problem, it can be
useful to normalize by dividing the amplitude with the variance.

One way to choose center point is to fit a rectangle as close to the bound-
ary as possible and pick the center point of the rectangle as center point.
Calculating the center of mass is another but more complex way.

27

Polar transform
Connected to signatures are polar transform were we resample the image along
a radius, then a new radius and so on. Can be useful to check distances/pat-
terns in circular patterns. we make a round representation linear. Log polar
transform is a modified polar transform where we sample logarithmic instead
of linearly. Here the center location of the sampling circle less important. This
representation doesn’t need to be of a whole image but can be used on part of
images.

Boundary segments
Boundary of contain concavities, regions that goes "into" the object. This
"regions" concavities carry information about the object and can be worth to
decompose into segments for further analysis. A way to achieve this is to cal-
culate the convex Hull of the region that is enclosed by the boundary, this is
the minimal enclosing convex region. But notice that this method can be noise
sensitive so it can be a good idea to use some sort of smoothing before convex
Hull calculations. Another way is to calculate it on a polygon representation.
Some terminology:

• Convex Hull, minimal enclosing convex region

• Convex region, all points can be connected with a straight line inside
the region

• Convex deficiency, subtracting the hull with the object itself. How
concave is the object

• Concavity tree, generate convex Hulls and deficiencies recursively, hulls
in hulls.

• Solidity, convex Hull area/object area

Skeletons
A "curve" representation of the object. The skeletons should in general be thin,
centered topologically to the original object. They are reversible. We can create
skeletons by using thinning which is a iterative method were we remove pixels
from the borders while trying to keep the overall shape and topology of the
object. Beware that this method is sensitive to noise and it can be necessary
to smooth before or prune afterwards. Medial axis transform, MAT is another
way were circles are used and checking were two or more points touching the
border at the same time.

Skeletons are useful to find the length of objects in images. Think of
satellite images of a river or delta.

28

Chain code
Chain code is a contour based shape descriptor. It describes the sequence of
steps generated by walking around the boundary. It can be defined by either
having 4 or 8 neighbors. Think of 4 and 8 connectivity in the segmentation
chapter. The drawbacks with this is it that it gives long code, a small change
of boundary changes the code, it depends on scale, starting point and rotation
(we get a different code when going counter clockwise than clockwise, can be
solved by difference code calculating two numbers each pass).

Descriptors
After representation we go to the next step which is to describe our bound-
aries and regions so that we later on can classify these. some simple boundary
(segment) descriptors:

• Length

• Diameter

• Minor axis (perpendicular to the major)

• Basic rectangle = major × minor

• Eccentricity = major/minor

• Slope density function

Fourier descriptors
We can represent the boundary as a sequence of coordinates and treat each pair
as complex number. From the discrete Fourier transform DFT of the complex
numbers we get the Fourier descriptors, which w can restore with the inverse
DFT IDFT. A trick we can use here is to use fewer points when transforming
back. As we reduce the number of points it act as smoothing of the shape. Some
shapes need more points, this is because we are trying to use cosine and sines
to represent the shape. So corners with high frequency content need almost all
points.

Image moments
Mentioned in an example already. We measure the weighted average of the
regions pixel intensities. Some simple descriptive properties of an segmented
image:

• Area

• Total intensity (gray-scale)

• centroid, (find center point)

• orientation

29

How to calculate:

Raw moments Mij - for p,q = 0,1,2,... : Mij =
∑
x

∑
y

xiyjI(x, y)

Area or sum of gray intensities)M00

Centroid: {x, y}){M10/M00,M01/M00, }

Central moments - for p,q = 0,1,2,... : µpq =
∑
x

∑
y

(x− xp)(y − y)qf(x, y)

(27)

Simple regional descriptors
Here are some simple regional descriptors presented:

• Area, the number of pixels in a region

• Compactness (P2A), perimeter2 / 4× π×area, close to 1, close to a circle

• Circularity ratio, 4× π×area / perimeter2

And some measures of graylevel:

• Mean

• Median

• Max ... etc

Example: Compactness

The Compactness of a line would be infinitely large since the area is
going to zero.

Topological descriptor
Topology is the study of the properties of a figure that are unaffected by any
deformation. Examples of topological descriptors are

• Number of holes in a region: H

• Number of connected components: C

• Euler number, E = C - H

Texture
Hard to define but are kind of patterns. Can be coarse, smooth or regular. Need
of a way to quantify it. There are statistical texture descriptors:

30

• Histogram based
Calculate and normalize the histogram and the apply moment. 2nd mo-
ment: variance (contrast measure), 3rd moment: Skewness, 4th moment
Relative flatness. Other common histogram based texture measures are:
checking of uniform the distribution is or the average entropy, measure
the variability, 0 for constant images. read more.... Beware doesn’t tell
anything of spatial distribution of pixels.

• Local binary patterns

• Co-occurrence based,
see example in recorded lectures. Some statistic measures: Max-
imum probability maxij(cij)(strongest response to P), Uniformity∑

i

∑
j c

2
ij and Entropy (randomness): −

∑
i

∑
j cij log2cij

And spectral texture descriptor: Use the Fourier transform.

How to choose / design representations and descriptors
We want to find representations/descriptors that are invariant (doesn’t change
after operations) to transformations that is not important to the task: Noise,
scale, blur etc. Create representations and descriptors that are relevant to
the questions we want to answer. Its all about understanding the data, the
application and the problem we are trying to solve. Be creative!

Lecture 8: Classification
tuesday 29 nov 13:15

14 Classification
In this lecture will the following topics be discussed:

• object vs pixel-wise classification

• how template matching can be used for segmentation/recognition

• Feature vectors and feature space, scatterplots

• Supervised classification

• Unsupervised classification

What is classification
Its the procedure in which individual items are grouped based on some similarity
between the objects and the description of the group.

Object and pixel-wise classification
In object-wise classification are the shape, size, mean intensity, mean color used
to describe patterns. In pixel-wise are intensity, color, texture, spectral infor-
mation used (segmentation).

31

Object-wise classification
The workflow: Segment the image into regions and label them, (these are the
patterns we want to classify). Then extract the features from each pattern, we
then train a classifier on examples were the "label"/class is known. We do this
to find a discriminant function in the feature space. To classify new examples
we use this function.

Pixel-wise classification
In this case is the pattern a pixel in a non segmented image. We extract/cal-
culate features for each pixel (grey level, color), train a classifier, use on new
examples and perform. Relaxation is used to reduce noise .The neighborhood
size determine the amount of relaxation. relaxation Read more.

Matching by correlation
This is a variant of object-wise classification were we use a template to locate
certain object/patterns. Is often used for segmentation. We use correlation to
match a mask w(x,y) with the image f(x,y). We let the mask slide over the
image and calculate the correlation a each position in the image.

c(x, y) =
∑
s

∑
t

w(s, t)f(x+ s, t+ y) (28)

Important concepts
The arrangement of descriptors are often called patterns. Descriptors are often
called features. The pattern arrangement that are most common are called
feature vector with n dimensions. Patterns are placed in different classes of
objects which share common properties. A collection of classes W are denoted:
W =ω1, ω2, ..., , ωW

Scatterplots
This is a good way to illustrate different relationships between features.

Feature selection
Scatterplots are an example of how we can choose between features. The goal
of feature selection is to find a finite number of features that can discriminate
between the classes. Just adding features without verification will often NOT
improve the result.

Supervised classification - Train and classify
In training we try to find rules and discriminant functions that separate the
different classes in the feature space, we do this by using our known examples
with labels. In classification we take a new and unknown example and put
it in the correct class by using the discriminant function. During supervised
classification we first apply our knowledge from previous data and then classify.

32

Discriminant functions
A discriminant function for a class is a function that will yield larger values
than functions for other classes if the pattern belongs to its class.

di(x) > dj(x) j = 1, 2, ...,W ; J ̸= i (29)

For W = ω1, ω2, ..., , ωW pattern classes we have W discriminant functions.
The decision boundary between class i and j:

di(x)− dj(x) = 0 (30)

Example: Box classification

• Intervals for each class and feature

• All objects with feature vector within same box belong to this class

• Generalized thresholding

– Multi-spectral thresholding

Bayesian classifiers
This classifier includes a priori knowledge of class probability and cost of er-
rors. The combination gives an optimum statistical classifier (in theory) which
minimizes the total average loss. Some assumptions to simplify classifier: Min-
imum distance classifier and maximum likelihood classifier.

Minimum distance classifier
Here is each class represented by its mean vector. Training is done by using
pixels/objects with known class and calculate the mean of the feature vector
for the object within each class. The examples are classified by finding the
nearest/closest mean vector.

The limitation of this classifier comes down to how much the mean differs
between the classes. The difference should be large compared to the randomness
in each class mean. Optimum performance with distribution forms spherical
hypercloud.

Maximum likelihood classifier
This method classify according to greatest probability taking the variance and
covariance into consideration. Here we assume each class take a Gaussian/nor-
mal distribution. The distribution within each of class can be described with
mean vector and covariance matrix.

Variance and covariance
The variance is the spread or randomness for the class. Covariance describes
the dependency/influence between the different features. We describe this with
a covariance matrix.

33

We compute the variance with the features: x1, x2, x3, ...,, with the feature
vector for object i: x1,i, x2,i, x3,i, ... and the mean for each feature and class:
xmean1

, xmean2
, xmean3

, ...:

cov(xi, xj) =
1

n− 1

n∑
k=1

(xi,k − xmeani)(xj,k − xmeanj
) (31)

Assumptions on covariance matrix
• Case 1 (MinDist)

– independent features → no covariance

– equal variance dj(x) = xTMj − 1
2mjmj

• Case 2 (UnCorrelated)

– independent features → no covariance

– different covariance for different features

• Case 3 (EqualCovar)

– same covariance for all classes

• Case 4 (General)

– Different covariance matrices for all classes

See lecture slides for better illustrations.

Decision tree
With this method we divide samples into classes by using one threshold at a
time. There are training algorithms / tree constructor algorithms.

ANN artificial neural networks
Creates a classifier with adaptive development of the coefficient for decisions
found via training. Don’t need to assume normal distribution. Inspiration from
the neurons in the brain. Can draw complicated decision border that are more
complex than hyper quadratic. These classifiers require careful training (and a
lot of data)

About trained (supervised) system
Features should be based on their ability to separate the classes. Adding new
features can result in decreased performance. It is important to have a train-
ings set which is much larger then the number of features. Linearly dependent
features should be avoided.

34

Unsupervised classification: cluster analysis
We can divide feature space into clusters by using the mutual similarity’s in the
subset elements. Its an explorative analysis. When we are done clustering we
compare it with reference data and identify classes.

We first classify then apply knowledge
Example of methods:

• K-means

– Is a top down approach
– Uses a predetermined number of clusters
– Tries to find a natural centers in the data
– Problem to illustrate result with more then 3 dimensions

• Hierarchical

– Is most often a bottom up approach
– It merges patterns until all are in one class
– The user decides which clusters are natural
– Result can be illustrated through a dendrogram

K-means clustering
We start with setting a number of clusters, k. Then initialize k starting points,
this can be done randomly or according through some distribution. We assign
each object to the closest luster and recompute the center for that cluster. Can
move objects between clusters in order to minimize the variance within each
cluster and maximize the variance between clusters.

Hierarchical clustering
To construct clustering tree or dendrogram we start with each object or pixel as
its own class, then merge the classes that are closest according to some distance
measure, then continue until only one class is achieved. We can then decide the
number of classes based on the distances in the tree.

Lecture 9: Classification
tuesday 6 dec 10:15

15 Classification with neural networks
This lecture will cover deep neural networks (DNN), the current state-of-the-art
in classification. Deep learning algorithms are the winning method in many ma-
jor competitions. DNN’s can learn hierarchical features from the input together
with the classification. Examples:

• Object detection

• Cell segmentation

• Medical image segmentation

35

• Super resolution

• etc

A linear classifier and how to train it
We start with the problem formulation and problems. We want to classify an
image given a set of discrete labels. The problems:

• Semantic gap
images are represented as 3D arrays, we can have different viewpoints and
variations from that.

• Illumination
Lighting can be different image to image, different scenes and illumination

• Deformation
The object we want to label may take many shapes.

• Occlusions
There might be other objects in the way of what we want to classify

• Background and clutter
The background might blend into our object.

• Inraclass variation
There are a lot of different looking cats...

Image classifiers vs sorting
There is no obvious way we can classify an image by a hard coded algorithm, like
a sorting algorithm. Image classifiers needs instead a data-driven approach were
we collect a data set of images with labels. We use machine learning to train our
classifier and then evaluate it on a set of test images that the model/classifier
was not trained on.

The task is to design a classifier f(x,W) that can tell us which class yi ∈
{1, 2, ..., N} an image xi belongs to. The approach is:

• Select a classifier - we start with a linear classifier y = WX+b

• Select performance measure - Loss functions (ex. SVM or SoftMax)

• Find the parameters W which maximize performance, minimize loss -
Learning

Linear classification
The parametric approach:

f(x,W) = Wx (32)

Example:

image
[
32× 32× 3

]
(33)

36

Multiclass SVM loss
Given an example image to classifier (xi, yi) where xi is the image and yi is the
label (integer) and using the shorthand for the scores vector: s = f(xi,W), the
SVM loss has the form:

Li =
∑
n ̸=y

max(0, sj − syi + 1) (34)

The full training loss is the mean over all examples in the training data:

L =
1

N

N∑
i=1

Li (35)

Softmax classifier (Multinomial Logistic Regression)
The scores is the unnormalized log probabilities of the classes:

P (y = k|X = xi) =
esk∑
j e

sj
, where s = f(xi,W) (36)

We want to maximize the log likelihood or for a loss function to minimize
the negative log likelihood of the correct class:

Li = −logP (Y = yi|X = xi) (37)

Or in summary:

Li = −log(
esyi∑
j e

sj
) (38)

To summarize: the goal is to minimize the loss over the training data. To
do this we Follow the slope to find the minimum. In multiple dimensions we
call this the gradient and in 1D the familiar derivative:

df(x)

dx
limh → 0

f(x+ h)− f(x)

h
(39)

1. Start with initialize weights

2. Compute the gradient w.r.t. W, ∇L(Wk, x) = (∂L
∂w1 ,

∂L
∂w2)

3. Take a small step in the direction of the negative gradient. Wk+1 =
Wk − stepsize ×∇L

4. Continue iterate from 2 until convergence

The limits of linear classifiers
There are many cases were the linear classifier gets a hard time classifying
correctly. See example in lecture slides of non linear classes

37

Neural networks - Stacked non-linear classifiers
In Neural networks we stack our linear classifiers and add a non linear activation
function.

• Before Linear score function: f = Wx

• Now 2-layer Neural network: W2max(0,W1x)

Example of activation functions:

• sigmoid(x) = 1
1+e−x

• tanh = ex−e−x

ex+e−x = sigmoid(2x)-1 ?

• ReLU(x) = max(0,1)

We can stack even more of this layer on top of each other

• Now 3-layer Neural network: W3(0, W2 max(0,W1x))

Deep Convolution Neural network
A Neural network containing one single hidden layer contains a finite number
of neurons that can approximate continuous functions on compact subsets of
Rn. It has been showed that deeper neural network (more hidden layers) can
generalize better. The number of weights in the fully connected deep neural
network grow exponentially for every layer we add, so does the computational
cost to train and do inference. But we can reduce this growth by recycling the
weights or share weights over the image. A convolution neural network contains
convolution layers that have local connections so the spatial relationships of the
image is preserved. This also result in parameter sharing. This is a technique
widely uses in image analysis.

2D and 3D convolutions
The filter coefficients for the convolution layer is learned from data. It can be
implemented as matrix multiplication and is therefore faster to compute. There
are fast GPU implementations that can be used for this. It is implemented as
tensor multiplications and additions. And it uses hierarchical feature extraction
?

Optimization
The steps involved in optimizing the classifier:

• Choose loss function

• Stochastic Gradient Descent and variants of it

• Initialization red

• Hyper parameters

• Overcome problems like over fitting, local minima, saddle points and van-
ishing gradients

• Regularization can solve some of this

38

Summary of neural networks
The neural network learns from its mistakes by using a loss function. The
neural network contains hundreds of parameters that need to be trained using
back propagation. We increase and decrease the parameter values so the mistake
is reduced, Stochastic Gradient Descen. And we repeat this process.

BONUS material
How do we compute this backpropagation?

• Gradient descent to minimize the loss L:

1. we initialize the weights W0 (randomly)

2. Compute the gradient ∇L(Wk, x) = (∂L
∂w1 ,

∂L
∂w2)

3. Take a small step in the negative gradient direction: Wk+1)Wk×∇L

4. Iterate from 2 until convergence

• Backpropagation uses the chain rule, the derivatives are propagating back-
wards: ∂L

∂input = ∂L
∂output

∂output
∂input

– Forward: compute the result of and save if any intermediates needed
for the gradient computation in memory

– Backward: apply the chain rule to compute the gradient of the loss
function with respect the the inputs.

extra notes
add DL optimization difficulties.

1. Non-convex

2. Large scale, both large n and large dimensions of θ

3. Noisy data

Classes of optimization methods:

1. Deterministic, look at the whole batch of training data

2. Stochastic, look at a random subset of of training data each time

benefit of stochastic to avoid getting stuck in local minima.
Fixed input size with fully connected.
softmax prediction number is not the probability, typically not true. Its just

an indicator
tips for first time use learn, resnet.

39

