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1 Introduction
Machine learning can typically be separated into three branches:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

Reinforcement learning is different from the two other branches in the way that it is not supervised with
labeled data, but it doesn’t find patterns in data completely on its own as in unsupervised learning. Instead
there is a reward signal, and the feedback can be delayed, so time come in as a factor as well. The actions
of the so called agent affect the subsequent data it receives.

1.1 The agent-environment interface
In our reinforcement learning setup we have the agent which is the decision maker and the environment,
which can be seen as everything else in the setup. The goal is to maximize the cumulative reward. The
agents task is to learn this from experience.

The agent observes the environments state and takes some sort of action, the agent then receives a rewards
from the action and the environments state changes. The agent must now observe the new state and take
a new action, and so on. Note: in reinforcement learning the environment, agent and/or reward may be
stochastic.

1.2 Probability theory - review
Lets consider two random variables X ∈ χ and Y ∈ γ

• Probability: the probability that we will observe x ∈ χ is written as:

Pr{X = x} (1)

• Conditional probability: If we have already observed y ∈ γ then the probability that we will observe
x ∈ χ is written:

Pr{X = x|Y = y} (2)

• Probability functions:

p(x) = Pr{X = x}, p(x|y) = Pr{X = x|Y = y} (3)

• Probabilities sum to 1: ∑
x∈χ

p(x) = 1 and
∑
x∈χ

p(x|y) = 1 (4)

• The expected value:

E[X] =
∑
x∈χ

xp(x), E[X|Y = y] =
∑
x∈χ

xp(x|y) (5)

1.3 What is a state?
The state St is a representation of the environment at time t. The state space S is a set of all possible
states. St will be dependent on what happened in the past, before time t. St contains all information that
is relevant for the prediction of the future at time t.

The Markov property

p(St+1|S0, A0, S1, A1, . . . , St, At) = p(St+1|St, At) (6)

3



Example: The taxi environment

• Taxi: 25 different positions possible
• Passenger: 5 positions including picked up
• Destinations: 4 options
• In total 25 x 5 x 4 = 500 configurations

We can enumerate all possible configurations in some way, let S = {0, 1, . . . , 499}. This is a finite
state space.

Example: Inverted pendulum

When balancing a stick, the control signal or action is the torque at the bottom. The state?
• St = θt

No! we don’t have any information about the direction the stick is moving in.

• St =

[
θt
dθt
dt

]
∈ S ⊂ R2

This is an example of a continuous state space, Infinitely many possible states.

1.4 What is the reward
The reward Rt is a scalar signal that tells how it is doing at that time step t. The goal is the maximize the
cumulative reward over long-time.

In the taxi example could we for example see a reward of -10 if a illegal pick-up or drop-off occurred, a
successful drop-off would score +20 and all other actions would score -1 in reward. So in other words, to
maximize the total reward we should deliver passenger in as few steps as possible.

In the inverted pendulum example could the goal be to keep the angle as close to zero as possible, perhaps:
Rt+1 = −θ2t and if we also want to use a low torque we could try: Rt+1 = −c1θ2t − c2a

2
t . With θt = 0 and

at = 0 we would get the maximum reward Rt+1 = 0

1.5 Sequential decision making
The goal is to select actions that maximize the future reward. So actions may have long term consequences
and reward may be delayed. It can also be the case that sacrificing immediate reward can gain more long-term
reward. Examples:

• A financial investment,

• Fueling a car, prevent fuel stop later

1.6 Designing the reward functions
In this course we will often receive the reward functions. However it is important to note that the design
of the reward function is important since it will determine what the agent tries to achieve. In some cases
the agent might also find unintended ways to increase the reward and the reward influences how the agent
learns.

an example would be the mountain car with the goal of reaching the top/the flag with as few steps as
possible. The reward is -1 for each step until the flag is reached. This is a sparse rewards, all action looks
equally bad until the flag is reached the first time. It could be possible to use a more informative reward
function, but it is important to make sure that the agent still optimize the correct thing we want.

1.7 What is an action
An action At is the way an agent can affect the state a time t and A is the set of all possible actions. In the
taxi example would an action be for example: go north, go west and pick-up and in the pendulum example
could it be: torque.
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1.8 Stochastic environments
A deterministic environment is one which the outcome of an action is determined by the current state and
the actions taken. While in the stochastic environment there is some randomness and the outcome of an
action is not completely determined by the current state. This means that the same action in the same
state might have different outcomes at different times. This means that it is harder for the agent to learn
an optimal policy.

1.9 The power of feedback
If no feedback is given we can pre-compute all actions A0, A1, ... if the first state S0 is given. While with
feedback we decide the action At after we have observed the state at time t, St. Example could be to walk
with or without blindfold. So instead of trying to find good actions we want to try to find a good policy.

1.10 What is a policy?
Policy is a distribution over actions given states:

π(a|s) = Pr{At = a|St = s} (7)

A policy defines how the agent will behave in different states. If we have a deterministic policy we can
sometimes write:

a = π(s) (8)

Example: The linear quadratic regulator

St = FSt +GAt +Wt (9)

If we want to maximize the expected value

E
[∑∞

t=0(−c1ST
t St − c2A

T
t At)

]
(10)

Then the Optimal policy: when we observe st, choose the action:

at = π(st) = −Lst (11)

for some fixed L, that we can find if F and G are know.

1.11 Terminology

Reinforcement learning Optimal control
Environment System / plant
State, St State, x(t)
Action, At Input, u(t)
Reward Cost, c(t)
Policy Controller
Maximize reward Minimize cost
Learn policy from experience Use model to find controller (LQC or MPC)

Table 1: example

1.12 Exploration vs exploitation
The agent should be able to learn a good policy without losing to much reward. Exploration is used to
learn more about the environment and exploitation is the use of information to maximize the reward. We
usually have both explore and exploit.
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1.13 Model vs model-free
In model based reinforcement learning we learn a model from experience and uses the model to find a good
policy and/or predictions. While in model-free learning we learn a policy and/or predictions without first
learning the model. In this course the main focus will be on model-free reinforcement learning.

2 Markov Decision process
This lecture will explain the concepts of Markov decision process, MDP’s, the Bellman equation and optimal
policy

2.1 Recap
For a state to have Markov property means that the state contains all the information that is useful
to predict the future. In other words, we don’t need the previous states to predict the future, the useful
information is stored in the current state. A Policy: π(a|s) choosing an action a when we are in state s, can
be deterministic or stochastic. The prediction gives the future cumulative reward following a policy. We
want to find the policy that maximize the cumulative future reward by control.

2.2 Markov decision process
If we begin with assuming that S,A and R have finite numbers of elements then the translation proba-
bilities are given by:

p(′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s,At = a} (12)

The Markov property determines the dynamics of the environment, the probability of transitioning to a
new state depends only on the current state and action. The state transitions:

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a) = (13)

With the expected reward

r(s, a) = E[Rr+1|St = s,At = a] =
∑
r∈R

∑
s′∈S

rp(s′, r|s, a) (14)

2.3 Episodic vs continuing tasks
• Episodic tasks

– Has terminating states and the task end in finite time.

– When reaching the terminating state the episode stops.

– If you reach the terminating state you will stay there forever, receiving no future rewards.

• Continuing tasks

– Often not a clear way to divide the task into independent episodes.

– No state were the task is done

– Must take into account infinitely many future rewards.
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2.4 The return
In a given state we want to maximize the future reward we can receive: Rt+1, Rt+2,.... To make it possible
to have non finite number of rewards we introduce the discounted reward

The discounted reward

Gt = Rt+1Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1,where 0 < γ ≤ 1 (15)

since we put γ ≤ 1 we put less value on future rewards, γ = 0.5⇒ γ10 = 0.001, γ = 0.9⇒ γ10 = 0.35.

And if γ < 1 we make sure that Rt < R for all t, and then Gt is bounded:

∞∑
k=0

γkRt+k+1 ≤ R

∞∑
k=0

γk =
1

1− γ
R (16)

If we know that the task ends after a finite number of steps we can get away with using non-discounted
returns where γ = 1

2.5 The state value function
The state-value function estimates the expected long term rewards the agent will recieve starting from a
specific state and following a given policy. Since St and Rt are random variables, the return is therefore also
a random variable:

Gt = Rt+1 + γRt+2 + . . .

We must therefore consider the expected return:

The state-value function

The state-value function vπ(s) of a MDP is the expected return starting from the state s and then
following the policy π:

vπ(s) = E[Gt|St = s] (17)

The prediction of cumulative reward is computed with vπ(s)

2.6 The action-value function
Another important value function is the action-value function that estimates the expected long-term
reward an agent will receive starting from a specific state, taking a specific action and following a given
policy.

The action-value function

The action-value function qπ(s, a) is the exptected return starting from s, taking action a, and then
following a policy π

qπ(s, a) = E[Gt|St = s,At = a] (18)

This function is also often called the Q-function.

2.7 Bellman equations
Looking at the reward we can note that:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... = Rt+1 + γGt+1 (19)
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Hence, the value function satisfies to following equation:

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s]

(20)

The value of s is the expected immediate reward plus the discounted expected vlue of the next state. In the
same way is action-value function:

qπ(s, a) = E[Rt+1 + γqπ(St+1, At+1|St = s,At = a)] (21)

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

qπ(s, a) = E[Rt+1 + γqπ(St+1, At+1|St = s,At = a)]
(22)

2.8 The expectation
The state-value of a state s, is the expected action-value:

vπ(s) =
∑
a

π(a|s)qπ(s, a) (23)

So for a deterministic policy a = π(s) we get vπ(s, π(s)). And given s and a, the immediate reward r and
the next state s′ has probability p(s′, r|s, a) so that:

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)(r + γvπ(s
′)) (24)

The Bellman equation for vπ and qπ

vπ =
∑
a

π(a|s)qπ(s, a) =
∑
a

π(a, s)
∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)]

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]
(25)

2.9 Solving the Bellman equation
Solving the Bellman equation is done by solving a system of linear equation, this is because the dependencies
between the different states. Each state s ∈ S gives one equation. There is a unique solution that can be
expressed analytically. If there is a large number of states, large S, then there are more efficient ways to
solve it with iterative solution. If p(s′, r|s, a) is not know, we need to learn vπ(s) from experience. If the
number of states S is infinite, we can’t compute the value for each state individually, and instead we need
to find some function v̂(s,w) ≈ vπ(s).

2.10 Optimal value function
This represent the maximum expected cumulative reward that can be achieved from a given state, following
the best possible policy. It quantifies the highest long-term reward that the agent can expect to obtain when
makin optimal decision from each state. The optimal state-value function is given by:

v∗(s) = max vπ(s), for all s ∈ S (26)

The optimal action-value function is given by:
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q∗(s, a) = max qπ(s, a), for all s ∈ S and a ∈ A (27)

The optimal v∗(s) should be the maximum of q∗(s, a), so we have:

v∗(s) = max
a

q∗(s, a) (28)

The equation for q∗(s, a):

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)(r + γv∗(s
′)) = max

a
E[Rt+1 + γ(St+1)|St = s,At = a]

= E[Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a]

(29)

Solving the Bellman optimality function

v∗(s) = max
a

∑
r,s′

p(s′, s|s, a)[r + γv∗(s
′)] (30)

This is a system of non-linear equation (non linear because of the max function). There is one equation for
each state, s. In general there is no closed form solution. But there are iterative methods to solve it.

2.11 Optimal policy
Partial ordering over policies: This is the relationship between different policies, where some of them
can be ranked as better or worse than others. This is based on their performance or expected returns. For
some policy pairs there is no such definitive ranking. This means that the ordering captures the hierarchy
of policies in terms of effectiveness but not necessarily a linear ranking of them.

π ≥ π′ if vπ(s) ≥ tπ′(s), for all s (31)

Theorem

• There exists at least one optimal policy π∗ such that π∗ ≥ π for all policies π.
• All optimal policies achieve the optimal state-value function vπ∗(s) = v∗(s)
• All optimal policies achieve the action-value function qπ∗(s, a) = q∗(s, a)

So how do make a decision in state s?

1. Choose an action, a that maximizes the optimal action-value q∗(s, a)

2. Then use an optimal policy form s′

The control part is to find this optimal policy. Were the policy is described with:

π∗(s) = argmax
a

∑
r,s′

p(s′, r|s, a)[r + γv∗(s
′)] (32)

which is optimal. But note if we already know q∗(s, a) then we don’t need the dynamics to find an optimal
policy.
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2.12 Repetition
Here follow some important concepts that were covered in previous lectures:

• States, actions and rewards, s ∈ S, a ∈ A, r ∈ R
• Dynamic/model: p(s′, r|s, a)
• Policy: π(a|s) (For deterministic policy also a = π(s))
• The return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (33)

• State-value function: Expected return when starting in s and following policy π:

vπ(s) = E[Gt|St = s] (34)

• Action-value function: Expected return when starting in s, taking action a and then follow
policy π

qπ(s, a) = E[Gt|St = s,At = a] (35)

• Relations:
vπ =

∑
a

π(a|s)qπ(s|a)

qπ =
∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)]

(36)

for a deterministic policy a a = π(s) we have vπ(s) = qπ(s, π(s))
• Bellman equation for state-values:

vπ(s) =
∑
a

π(a|s)
∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)]

= Eπ[Rt+1 + γvπ(St+1)|St = s]

(37)

• Optimal value function:

v∗ = max
π

vπ(s), for all s ∈ S

q∗(s, a) = max
π

qπ(s, a), for all s ∈ S and a ∈ A
(38)

• Bellman optimality equation:

v∗(s) = max
a

q∗(s, a) = max
a

∑
r,s′

p(s′, r|s, a)[r + γv∗(s
′)] (39)

3 Dynamic programming
Dynamic programming is a class of algorithms that solves a problem by breaking it down to smaller, overlap-
ping sub-problems. Solving these sub-problems and combine them to one solution. Methods like value and
policy iteration are useful for solving Markov Decision Processes by iteratively updating value functions or
policies to find the optimal strategy. For this section we will assume that we know the dynamics p(s′, r|s, a).

• Prediction

– Given a policy π, predict the expected future return from each state.

– That is, find the state-value function vπ(s)

• Control:

– Given a MDP, find an optimal policy π∗

10



– If we first compute v∗, then we can use:

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)[r + γv∗(s
′)]

π∗ = argmax
a

q∗(s, a)

(40)

3.1 Policy evaluation
For the problem we are given: π, then we compute vπ(s) for all s ∈ S. Using the bellman equation:

vπ(s) =
∑
a

π(a|s)
∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)] (41)

This gives us a system of linear equation that can be solved analytically or with iterative process. For large
state and or action space, it’s more effective to use the iterative alternative.

3.2 Iterative policy evaluation
We start of with making some sort of initial guess. v0, for example: v0(s) = 0 for all s. In each of the
iterations we use the RHS of the bellman equation:

vk+1(s) =
∑
a

π(a|s)
∑
r,s′

p(s′, r|s, a)[r + γvk(s
′)], for all s ∈ S (42)

If we get to a point were vk(s) = vk+1(s) then we have reached a vk that solves the Bellman equation. For
convergence it can be shown that vk(s) → vπ(s) as k → ∞. This is done using the method of contraction
mapping: Let uk and vk be two different estimates, then:

||yk+1 − vk+1||∞ ≤ γ||uk − vk||∞ (43)

with uk = vπ

||vπ − vk+1||∞ ≤ ||vπ − vk||∞ (44)

Bootstrapping is the process of using the old estimate vk to improve our new estimate

3.3 Implementation
For a finite state space S we can represent the state value function v(s) as an array with one element for
each state in S. vk → vπ as k → ∞, but in practice we stop when the difference between the new and old
step is small enough. The algorithm is then:
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The algorithm

Synchronous updates:
1. Initialize vold (e.g. vold = 0 for all s)
2. For all s ∈ S:

vnew(s) =
∑
a

π(a|s)
∑
r,s′

p(s′, r|s, a)[r + γvold(s
′)] (45)

3. if |vold(s)− vnew(s)| < tol for all s, output vnew and stop.
4. Otherwise let : vold ← vnew and go back to step 2.
5. Asynchronous updates also converge to vπ(s) as long as we keep updating all states.

Asynchronous updates: (in-place updates)
1. Start with initial v(s) (e.g. v(s) = 0)
2. For all s ∈ S

v(s)←
∑
a

π(a|s)
∑
r,s′

p(s′, r|s, a)[r + γv(s′)] (46)

3. If changes in v are small enough we are done, otherwise back to step 2.
This is easier to implement and only need one array v(s). Notice that now the updates depends on
what order we sweep through the states. It also converges to vπ(s), often faster.

3.4 Policy improvement
Given a policy π we now need to see how to evaluate vπ(s), is it possible to find a better policy? That is the
policy π′ such that:

vπ′(s) ≥ vπ(s), for all s ∈ S (47)

The value of taking the action a in state s ant then following the policy π afterwards is given by:

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)] (48)

The greedily action with the respect to the action values i.e.:

π′(s) = argmax
a

qπ(s, a) (49)

3.5 The policy improvement theorem
Lets consider the deterministic policy a = π(s) (the result holds for stochastic π(a|s) also). Then the greedy
policy with respect to vπ(s) is:

qπ(s, π
′(s)) ≥ vπ(s) = max

a
qπ(s, a) (50)

and hence

qπ(s, π
′(s)) = max

a
qπ(s, a) ≥ qπ(s, π(s)) = vπ(s) (51)

The policy improvement Theorem

If qπ(s, π′(s)) ≥ vπ(s) fir all s ∈ S, then

vπ′(s) ≥ vπ(s), for all s ∈ S (52)

This means that π′(s) = argmax
a

qπ(s, a) is as good as, or better than π(s)
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3.6 Is this an improvement?
The policy improvement is given by

π′ = argmax
a

qπ(s, a) = argmax
a

∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)] (53)

this will be at least as good as π in all states. But what if there is no improvement? What if vπ(s) = vπ′

for all s? then qπ(s, a) = qπ′(s, a) and:

vπ(s) = vπ′ = qπ′(s, a) = max
a

∑
r,s′

p(s′, r|s, a)[r + γvπ(s
′)] for all s (54)

This is the Bellman optminality equation, so π and π′ are optimal policies! So the conclusion is that π′

will be strictly better than π, unless π is already optimal.

3.7 Policy iteration
If we start with an initial policy π:

1. Polict evaluation (E): Compute vπ(s) for all s. The iterative policy evaluation

2. Policy improvement (I): Let π′(s) = argmax
a

qπ(s, a) for all s

3. If we have a improvement go to 1. Otherwise we have found the optimal policy π

π0
E→ vπ0

I→ π1
E→ vπ2

I→ π2 . . .
I→ pi∗

E→ v∗ (55)

In the case of a finite MDP this will converge within a finite number of iterations. Some details regarding
the implementation: In E: we can start from the previous policy to speed up the computations and in I: if
there are several a that maximize qπ(s, a), choose one arbitrary or a stochastic policy that picks between
them with uniform probability.

3.8 Value iteration
In policy iteration we do the evaluation complete before we improve the policy, this is called generalized
policy iteration. We can also stop the evaluation after just one sweep over all states, this is called value
iteration

If we take a look on what happens if we do one iteration of evaluation before we improve, that is for all s:

qk+1(s, a) =
∑
r,s′

p(s′, r|s, a)[r + γvk(s
′)]

πk+1(s) = argmax
a

qk+1(s, a)

vk+1(s) = qk+1(s, pik+1(s))

(56)

Or in one equation:

vk+1(s) =
∑
r,s′

p(s′, r|s, a)[r + γvk(s
′)] (57)

With this iteration we will converge to the optimal v∗(s). We can for example use in place updates instead
of synchronous updates.
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3.9 Value iteration and the Bellman optimality equation
• Value iteration:

vk+1(s) = max
a

∑
r,s′

p(s′, r|s, a)[r + γvk(s
′)] (58)

• Fixed point: if vk(s) = vk+1(s) for all s, then

vk(s) = max
a

∑
r,s′

p(s′, r|s, a)[r + γvk(s
′)] (59)

This is the Bellman optimality function, so vk(s) is the optimal value function

• Optimal policy: When converged to v∗ we can find an optimal policy;

π∗(s) = argmax
a

g∗(s, a) (60)

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)[r + γv∗(s
′)] (61)

3.10 Summary
For all methods the idea is to apply the right hand side RHS of the corresponding Bellman equation repeatedly
until it convergence. All methods can also be applied to q(s,a)

Problem Based on Algorithm
Prediction Bellman equation for vπ Iterative policy evaluation
Control Bellman equation for vπ + Greedy policy improvement Policy iteration
Control Bellman optimality equation Value iteration

Table 2: example

4 Model-free prediction
Model-free prediction is the process estimating the value functions directly from observed experiences ex-
plicitly modeling the environment’s dynamics. Methods like Q-learning and SARSA use trial and error
interactions with the environment to learn the optimal policies.
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Repetition

• States, action and rewards: s ∈ S, a ∈ A, r ∈ R
• Dynamic model : p(s′, r|s, a)
• Policy: π(a|s) (for deterministic also )a = π(s)
• The return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (62)

• State-value function: Expected return when starting in s and following policy π

vπ(s) = E
[
Gt|St = s

]
(63)

• Action-value function: Expected return when starting in s, taking action a and then follow
π

qπ(s, a) = E[Gt|St = s,At = a] (64)

• Bellman equation:

vπ =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)], for all s ∈ S (65)

• Policy evaluation:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)] then vk(s)→ vπ(s) (66)

• Policy improvement:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]

π′(s) = argmax
a

qπ(s, a)

(67)

• Policy iteration:
π0

E→ vπ0

I→ π1
E→ vπ2

I→ π2 . . .
I→ pi∗

E→ v∗ (68)

• Bellman optimality equation:

v∗(s) = max
a

q∗(s, a) = max
∑
r,s′

p(s′, r|s, a)[r + γv∗(s
′)] (69)

• Value iteration: (based on Bellman optimality equation)

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)], then vk(s)→ v∗(s) (70)

• Optimal policy:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

π∗(s) = argmax
a

q∗(s, a)

(71)
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4.1 Monte-Carlo methods
Given the problem that we throw two dice and call their sum G, what is V = E[G]? We can calculate this
using different methods:

• By hand:

– Each dice has 6 sides, so we can get 36 combinations

– There is no way to get G = 1, so p(1) = 0

– There is one way to get G = 2, so p(2) = 1/36

– . . . and so on.

– We finally get E[G] =
∑12

g=1 gp(g) = 7

• Monte-Carlo

– Make many throws and get independent observations: G1, G2, . . . , Gn

– Use the empirical mean to estimate V = E[G]:

V̂n =
1

n

n∑
k=1

Gk (72)

– This methods don’t require the knowledge of how the dice works!

• Law of large numbers: V̂n → E[G] as n→ inf

4.2 Bias and variance
Let θ̂n be an estimate of θ using n random samples. Since the samples are random, we got that θ̂n is a
stochastic variable. This makes it possible to talk about the expected value and variance of θ̂n.

• Bias: (unbiased if bias = 0)
Bias (θ̂n) = E[θ̂n]− θ (73)

• Variance:
Var (θ̂n) = E[(θ̂n − E[θ̂n])2] (74)

• The MSE:
MSE (θ̂n) = E[(θ̂n − θ)2] = Var (θ̂n) + Bias (θ̂n)

2 (75)

• Consistent if θ̂n → θ as n→ inf

We want to estimate the expected value V = E[G] by using the observations: G1, G2, . . . , Gn

V̂n =
1

n

n∑
k=1

Gk (76)

Where the bias and variance are:

Bias(V̂n) = E[V̂n]− V = E
[
1
n

∑n
k=1 Gk

]
− V =

1

n

n∑
k=1

E[G]− V = E[G]− V = 0

Var (θ̂n) = E[(V̂n − E[V̂n])
2] =

35

6n
≈ 5.83

n

(77)

So, as n approaches infinity the variance goes to zero.
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4.3 Incremental updates
We don’t have to save the information of all previous observations, wasting memory and recalculate every-
thing for each new observation. We can store the passed information with:

V̂n−1 =
1

n− 1

n−1∑
j=1

Gj (78)

And when getting one more observation Gn:

V̂n =
1

n

n∑
j=1

Gj =
1

n
(Gn +

n−1∑
j=1

Gj) =
1

n
(Gn + (n− 1)V̂n−1) = V̂n−1 +

1

n
(Gn − V̂n−1) (79)

With this we can start from that V̂ = 0, n = 0 and then for each new observation G do this:

n← n+ 1

V̂ ← V̂ +
1

n
(G− V̂ )

(80)

We summarize it more generally like this:

V̂
New estimate

← V̂
Old estimate

+ αn
Step size

[
G

Target
− V̂

Old estimate

]
(81)

With each step we move the estimate a bit closer to the observed "target". For the empirical mean the step
size is αn = 1

n . For independent and identically distributed (i.i.d) observation of G this will converge to E[G]
if:

∞∑
n=1

αn =∞,

∞∑
n=1

α2
n <∞ (82)

In non-stationary problems with a constant α ∈ (0, 1) we "forget" the old observations. The variance will
in this case not go to zero, but it can adjust to changing probabilities. The extreme cases when α = 0 will
give V̂ ← V̂ , meaning that we don’t learn anything. In the case α = 1 will give us that V̂ ← G meaning
that we forget all past observations.

4.4 Monte-Carlo prediction
Lets consider an episodic task (a task that terminates within a finite number of steps). Our goal is to learn
vπ(s) from experience under policy π:

S0, A0, R1, S1, A1, R2, . . . , ST ∼ π (83)

The return:

Gt = Rt+1 + γRt+2 + . . .+ γT−1RT (84)

The value function:

vπ = E[Gt|St = s] (85)

Monte-Carlo: Estimate vπ(s) by using the empirical mean return of many episodes instead of the expected
return. With Monte-Carlo we do not need to know what the probability p(s′, r|a, s) is!
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First-visit vs every-visit

• First-visit
1. Sample an episode S0, A0, R1, . . . , ST−1,AT−1,RT

using policy π.
2. The first time step t that state s is visited, add Gt to Returns(s).
3. Let V(s) = average(Returns(s)).
4. Go back to step 1.

• Every-visit
1. Sample an episode S0, A0, R1, . . . , ST−1,AT−1,RT

using policy π.
2. Every time-step t that state s is visited, add Gt to Returns(s).
3. Let V(s) = average(Returns(s)).
4. Go back to step 1.

4.5 Properties of Monte-Carlo
• Positive:

– Consistent: V (s)→ vπ(s) as N(s)→∞.

– First-visit MC is unbiased (every-visit can be biased).

– Does not make use of the Markov-property

• Negative:

– Does not make use of the Markov-property

– Generally high variance, reducing it may require a lot of experience.

– Must wait until the end of episode to compute Gt and update V

4.6 Incremental updates
In the Monte-Carlo method we compute the average of all observed returns Gt which is seen in each state.
With incremental updates

1. Collect a trajectory S0, R1, S1, R2, . . . , ST following the policy π

2. For (the first/every visit) St compute Gt and let

N(St)← N(St) + 1

V (ST )← V (St) + αn(GT − V (St))
(86)

Here the empirical mean is: αn = 1
N(St)

. For example non stationary environment we may instead is a
constant α

4.7 Monte-Carlo vs Dynamic programming
Here we compare the two methods:

vπ = Eπ[Gt|St = s] = Eπ[Rt+1 + γvπ(st+1)|St = s] (87)

• Dynamic programming:
V (s)← E[Rt+1 + γV (St+1)|St = s] (88)

– Bootstrapping, each new estimate is based on a previous estimate

– Computes the expectations exactly, but estimates since it is based on estimate V (St+1)

– In DP we need the model p(s′, r|s, a) to compute expectation.

• Monte-Carlo
V (St)← V (St) + α(Gt − V (St)) (89)

– We do not use bootstrapping, this is because we use the full return Gt
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– It is an estimate because we use the empirical mean of Gt and not E[Gt|St = s]

– We don’t need any model since the samples Gt can be computed from experience we collect.

Question... Can we combine bootstrapping and learning from experience?

4.8 Temporal-difference (TD) learning
We start again with the expected return for a given state:

vπ = Eπ[Gt|St = s] = Eπ[Rt+1 + γvπ(St+1)|St = s] (90)

In Monte-Carlo we use the target Gt but in TD we use the TD-target Rt+1 + γV (St+1)

MC: V (St)← V (St) + α(Gt − V (St))

TD: V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))
(91)

This is often called TD(0) since it is a special case of TD(λ) with λ = 0. TD methods bootstraps since the
new estimate V (St) is based on the estimate V (St+1). In TD we do not have a complete episode to base the
update on.

TD-learning

• Initialize the estimate V (for example V(s) = for all s)
• Star in some state S

1. Take action A according the policy π(a|S)
2. Observe reward R and new state S′

3. V (S)← V (S) + α[R+ γV (S′)− V (S)]
4. S ← S′

• (If the task is episodic, we would have to re-run the above loop for several episodes)
Note: We do not have to complete the episode before we start learning, and we can even learn
while continuing the tasks.

4.9 The bias
Taking a look at the bias of the method and comparing it to the Monte-Carlo method.

• The MC-target Gt

– Unbiased estimate of vπ(St

– It is note based on previous estimates (in other words no bootstrapping)

• The "true TD-target" : Rt+1 + γvπ(St+1)

– Unbiased estimate of vπ(St)

– This cannot be computed since we don’t know vπ(St+1)

• The TD-target Rt+1 + γV (St+1)

– Is a biased estimate of vπ(St)

– Based on old estimate of Vt+1, bootstrapping

4.10 Comparing TD and MC
Monte-Carlo can only be used in episodic environments and have high variance but zero bias. This method
converges to vπ(s if α is decreased with a suitable rate. The Monte-Carlo method has good convergence
properties even for function approximation. Another advantage is also that it is not sensitive to initial
conditions. The MC method is usually more efficient in non-MDP environments. Temporal differences on
the other hand can be used for both episodic and non-episodic environment and have a low variance but
some bias. It also converges to vπ(s) if α decreases with suitable rate. In comparison to MC it does not
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always converge with function approximation. It is more sensitive to initial conditions but usually more
efficient in MDP environments.

5 Model-free control
Model-free control is a class of algorithms that aim to learn an optimal policy directly from interacting with
the environment without building an explicit model of the environments dynamics. They rely on a trial
and error experience to update the estimate of the value-functions or action-value functions. Examples are
Q-learning, learning the Q-function and SARSA learning the value-function.

5.1 Model free control
How do we improve the policy? One way is to take the greedy policy improvement with respect to the state
value-function vπ(s):

π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (92)

But this requires us to know the model: p(s′, r|s, a). If we instead take the greedy policy improvement with
respect to the action value function we got:

π′(s) = argmax
a

qπ(s, a) (93)

In this case we don’t need the model. So the first idea is to estimate the action-value function qπ(s, a) instead
of the state value-function vπ(s)

Example: Can we learn enough from greedy actions

• Initial: Q(left) = Q(right) = 0
• You open left and get the reward 2:

Q(left) =2, Q(right)=0

• You open left and get reward 0:

Q(left) =1, Q(right)=0

• You open left and get reward 4:

Q(left) =3, Q(right)=0

With this approach we will never learn about what happens if we would open the right door

With that example in mind we present idea 2: make sure that we continue to explore different options!

5.2 ϵ-greedy exploration
There is a trade-off between exploiting current knowledge and exploring new options. A possible solution is
to ensure that all actions have non-zero probability. We call this policy ϵ-greedy policy: If π(a|s) ≥ ϵ

|A| for
all a and s.

• ϵ-greedy with respect to qπ(s, a):

– with probability 1 - ϵ choose a greedy action argmax
a

qπ(s, a)

– with probability ϵ choose an action at random.
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Policy improvement theorem

For any ϵ-soft policy π, the ϵ-greedy policy π′ with respect to qπ is an improvement, i.e.

vπ′(s) ≥ vπ(s), for all s ∈ S (94)

The conclusion is that: policy improvement with ϵ policies will converge to the best ϵ-soft policy.

5.3 On-policy vs off-policy learning
With in-policy learning we can say that we are "learning on the job" by estimating the action value function
qπ(s, a) by running the policy π. In off-policy learning we "learn by looking over the shoulder", estimate
the action value-function qπ(s, a) while running a different policy µ. For example we learn about q∗(s, a)
(optimal q-function), while running a policy with more exploration.

5.4 Monte-Carlo control
We use the policy to collect trajectories: S0, A0, R1, S1, A1, R2, . . . , ST . Then estimating the state-value
function by computing the average over all returns seen from each state. The incremental update is:

V (St)← V (St) + α(Gt − V (St)) (95)

For estimating action-value function we compute the average over all returns seen from each state/action-
pairs and the incremental update is:

Q(St, At)← Q(St, At) + α(Gt −Q(St, At)) (96)

5.5 Exploration is needed!
The estimation of the state-values: V (St)← V (St) +

1
N(St)

(Gt − V (St)), converges to vπ(s) as N(s)→∞
Estimation of action-values: Q(St, At) ← Q(St, At) +

1
N(St,At)

(Gt − Q(St, At)), converges to qπ(s, a) as
N(s, a) → ∞. However if the policy π(s|a) = 0 for some s and a then we will not learn this action-value!
With a ϵ-soft policies we guarantee that pi(a|s) > 0 for all s and a.

As long as we use a ϵ-soft policy Q(s, a) will converge to qπ(s, a) as the number of sampled episodes goes to
∞. Now it is time to improve the policy!!

5.6 Monte-Carlo policy iteration
The policy evaluation: Monte-Carlo evaluation is used to get Q = qπ. The policy improvement: we let a
new policy π be ϵ-greedy with respect to qπ. This will converge to the best ϵ-soft policy. For this we need
infinitely many episodes to guarantee that Q = qπ which is not possible in practice.

• At every episode:

– Policy evaluation: Use MC to update Q.

– Policy improvement: Let new π be ϵ-greedy with respect to Q.

– On policy: we always update Q toward qπ for the the current policy.
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Monte-Carlo control

1. Initialize Q (in other words Q(s,a) = 0 for all s and a) and let πPϵ-greedy(Q)
2. Sample episode using π : S0, A0, R1, . . . , ST

3. For each state St and action At in the episode:

N(St, At)← N(St, At) + 1

Q(St, At)← Q(St, At) +
1

N(St, At)
(Gt −Q(St, At))

(97)

4. Improve policy: π ← ϵ-greedy(Q)
5. Go to step 2

5.7 Exploration
If we converge we get the best policy among the ϵ-soft policies. It is possible to gradually reduce the ϵ (but
not to fast) toward zero, in order to converge to the optimal policy. Then after training we can remove the
exploration by setting the ϵ = 0 and thus using the greedy policy with respect to Q.

5.8 SARSA
If we return to MC and TD (aka SARSA) and compare these. TD has several advantages over MC-prediction:
Lower variance, the capability to run online, without waiting to end of episode and it can be used with
incomplete sequences. SARSA can apply TD to qπ(s, a) and use ϵ-greedy policy improvements, and improve
every time-step.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s,At = a]
(98)

Estimating the state-values with given {St, Rt+1, St+1} ∼ π the update is:

V (St)← V (St) + α(Rt+1 + γV (St+1)
Target

− V (St)) (99)

Estimating the action-values with SARSA given {St, At, Rt+1, St+1, At+1} ∼ π the update will be:

Q(St, At)← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)
Target

−Q(St, At)) (100)

5.9 SARSA control
• At every time-step:

– Policy evaluation: Use SARSA to update Q

– Policy improvement: Let new π be ϵ-greedy with respect to Q

– On-policy: We always update Q towards qπ for current policy
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SARSA-algorithm for control

• Initialize Q(s,a) in other words Q(s,a) = 0 for all s and a.
• For each episode

1. Get initial state S
2. Choose A from S that is ϵ-greedy with respect to Q
3. For each step of episode:

– Take action A and observe R,S′

– Choose A′ from S′ that is ϵ-greedy with respect to Q
– Q(S,A)← Q(S,A) + α(R+ γQ(S′, A′)−Q(S,A))
– S ← S′, A← A′

5.10 Off-policy control - Q-learning
Here the goal is the learn the action-value function qπ(s, a) for a target policy π with experience from using
the behavior policy µ. This is useful when we want to learn by observing how humans or other agents
act. It is also useful when we want to re-use experience that is already collected from old policies. It is also
useful when we want to learn the optimal q∗(s, a) while following an exploratory policy.

qπ(s, a) = Eπ

[
Rt+1 + γqπ(St+1, At+1

∼π(a|St+1)

)|St = s,At = a

]
(101)

If we consider the data collect using the behavior policy µ

St, At, Rt+1, St+1, At+1 ∼ µ (102)

Then update: let A′ ∼ π(a|St+1) and use the update:

Q(St, At)← Q(St, At) + γ(Rt+1 + γQ(St+1, A
′)−Q(St, At)) (103)

We want both behavior and target policies to improve. The target policy, π: Greedy with respect to Q(s,a)
and behavior policy, µ: ϵ-greedy with respect to Q(s,a). The Q-learning target is then:

Rt+1 + γQ(St+1, a) (104)

Here is A′ = argmax
a

Q(St+1, a). If we insert this we can rewrite the target as:

Rt+1 = γQ(St+1, argmax
a

q∗(St+1, a)) =

Rt+1 + γmax
a

q∗(St+1, a)
(105)

We can compare this to the Bellman optimality equation:

q∗(s, a) = E[Rt+1 + γmax
a

q∗(St+1, a)|St = s,At = A] (106)

The Q-learning theorem

Q-learning converges to the optimal action-value function q∗(s, a) as N(s, a) → ∞ if the step size α
decreases toward 0 with a suitable rate.

With a good estimate of q∗(s, a) we can find the optimal policy π∗greedy(q∗). In practice it will often work
with a constant α if it is small enough.
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Q-learning for off-policy

• Initialize Q(s, a, in other words Q(s, a) = 0 for all s and a.
• For each episode:

1. Get initial state S
2. For each step of the episode:

– Choose A from S that is ϵ-greedy with respect to Q
– Take action A and observe R,S′.
– Q(s, a)← Q(S,A) + α(R+ γmax

a
Q(S′, a)−Q(S,A)

– S ← S′

3. When the training is done. Get the target policy with respect to Q.

6 Model-based Reinforcement learning
This is a class of reinforcement learning algorithms that builds a model of the environments dynamics and
reward structure to improve decision making, a policy. By approximating a model of the environment
the model-based RL can plan better and faster. The model-based RL uses the model to simulate possible
outcomes and optimize the actions accordingly. This approach can lead to more efficient learning, better
exploration and improved generalization. Especially in environments with sparse rewards or limited data.

6.1 Repetition, if we do not have a model?
We can use experience to estimate value functions: St, At, Rt+1, St+1, At+1 to make new estimates:

New estimate← Old estimate + Step size[Target−Old estimate] (107)

Repetition

• TD-Learning to estimate vπ(s, a)

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (108)

• SARSA (on-policy):

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St, At)−Q(St, At)] (109)

• Q-learning (off-policy):

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St, At)] (110)

Possible alternative: Use the experience to estimate a model of the environment.

6.2 What is a model
There are many ways to descrive what a model is, but here are two interesting quotes on the subject:

Anything we can use to answer questions about the environment without interacting with it.”
– Lennart Ljung and Torkel Glad

“Essentially, all models are wrong, but some are useful.”
– George E. P. Box

In reinforcement learning a model is something the agent can use to predict how the environment will
respond to a given action. It can:

• Produce a prediction of next state and reward: (s, a)→ (ŝ′, r̂′
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• Produce a prediction of next state (s, a)→ ŝ′

A distribution model is a model that provides probabilities for all possible possibilities: p(s′, r|s, a). This
is in general more difficult than the other type of model. Sample model provides us with one random
sample from the possible outcomes.

6.3 Why model-based?
The advantages with model-based RL is that the agent can learn a model with supervised learning that
have more established methods. It has been used in classical control with success and for a wide range of
different tasks. It is possible to use prior knowledge to reduce the number of unknown parameters. There
is a similarity between model building and System identification in classical control. If feedback is used a
perfect model is not typically not needed. With a model it is possible to reason about model uncertainty
and offers more explainability. Transfer learning is an advantage were pre-existing knowledge and experience
from one task is used to enhance performance in another related task. Examples of disadvantages with
model-based RL are that estimated model might not capture the dynamics of the environment very well and
the result may be a bad policy. By learning model and then construct the value function we have introduced
two sources of approximation error. It is sometimes the case that the value function and optimal policy can
be much simpler than an accurate model.

6.4 How to do model-based RL
This can be done in many different ways but the most common methods are:

1. Learn a model of the environment (Supervised learning / System identification)

2. Find the optimal policy for that model:

• Classical control methods

• Dynamic programming

• Q-learning, SARSA etc with the samples produced with the model

There are some possible extensions, for example to use some uncertainty measure and find a that is robust
to this uncertainty. Here follows a list of examples models:

• Table lookup

• Linear dynamic system

• Gaussian process model

• Linear regression model

• Deep neural network

6.5 Table lookup model
The model is p(s′, r|s, a) explicitly. Training data is collected S0, A0, R1, S1, . . . , RT , AT and used to estimate:

p̂(s′, r|s, a) = 1

N(s, a)
(Number of times (s′, r) came after (s, a)) (111)

For a good model at (s, a) we have to have seen this state-action pair many times. That is, exploration is
still a very important part!

6.6 Model-based and sample-based planning
With a given estimated model p̂(s′, r|s, a) we can solve the MDP and use some of our favorite methods
to do so: value iteration or policy iteration. With sample-based planning we use the model to generate
samples for us. This a very simple but powerful approach. We then use sample experience from the model:

St+1, Rt+1 ∼ p(s′, r|St, At) (112)
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Then we apply model-free RL to these model generated samples, with for example:

• Monte-Carlo control

• SARSA

• Q-learning

This can be very useful when sampling form the real world is very expensive.

6.7 Learning and planning
In model-free learning we don’t have a model and must learn from real experience to train/learn our value
functions. With Model-based RL and sample-based planning we learn a model from real experience and
then learn the value function (and or policy) from the simulated experience. Dyna or integrated learning
and planning learns a model from experience and then learns the value function (and or policy) from real
and simulated experience.

6.8 Dyna
Dyna combines the model-based learning and direct learning from real experience. This enables the agent
to learn and update its knowledge about the environment while at the same time improving its policy. The
key concept is called experience replay which allows the agent to learn from past experience and simulated
experiences from the model which gives efficient exploration and decision making.

Figure 1: Dyna architecture

6.9 Tabular Dyna-Q for deterministic environments
With model learning, if we observe: St, At, Rt+1, St+1 then :

Model(St, At)← Rt+1, St+1 (113)

And with Q-learning form both the simulated and real experience S,A,R, S′ we can do:

Q(S,A)← Q(S,A) + α[R+ γmax
a

Q(S′, a)−Q(S,A)] (114)
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Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(∫) Loop forever:
1. S ← current (nonterminal) state
2. A← ϵ-greedy(S,Q)
3. Take action A; observe resultant reward R and state S′

4. Q(S,A)← Q(S,A) + α[R+ γmax
a

Q(S′, a)−Q(S,A)]

5. Model(St, At)← Rt+1, St+1 (assuming that the environment is deterministic)
6. Loop repeat n times:

• S ← random previously observed state
• A← random action previously taken in S
• R,S′ ← Model(S,A)
• Q(S,A)← Q(S,A) + α[R+ γmax

a
Q(S′, a)−Q(S,A)]

6.10 DynaQ vs DynaQ+
DynaQ is model biased, it (Naively) inherently assumes that the learned model is an accurate description
of the real environment. So if the environment changes it takes time to adapt or in some cases it might
take long time to discover a more efficient way to solve the task. DynaQ+ is a possible solution to this.
The idea is to when simulating experience add a reward for exploring states not seen before: Specifically, if
R,S′ ← Model(S,A) then use:

R+ κ
√
τ (115)

in the Q-update. Here τ is the number of time steps since (S,A) was last visited in the real experience. We
encourage the agent to visit states it has not seen for a long time. This extra exploration may cost some
extra, but the curiosity can help if the real world changes for example.

6.11 Exploration vs Exploitation trade-offs
There is always a trade off in RL when it comes to exploration and exploitation. When we explore we gather
more information and can find better policys but this cost us reward while we are doing this and there is
always the possibility that we don’t find a better policy either. With exploitation we make the best decisions
from the knowledge we currently have and don’t waste "energy" on trying to find better ways to do it. Some
explorations ideas we seen so far are:

• ϵ-greedy

• DynaQ+

• Optimistic initialization

7 Model-based RL in continuous action and state spaces
Now we will start talking about how we can extend the ideas that have been presented so far to continuous
state and action spaces. In this case we can’t store the Q-values for all possible state/action-pairs in a table
any more and we will therefore use function approximations instead:

Q(s, a;w) ≈ qπ(s, a) (116)

There are many ways to do model-based RL in these situations.

7.1 A system identification approach
If we assume that the dynamics of the environment can be accurately described as:

st+1 = f(st, at;w) (117)
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where w is a vector of unknown parameter/weights. Here the f(·) can be a neural network, a basis expansion
or a linear system. Data/experience is to be collected (S0, A0, S1, . . . , At−a, ST ), learning the model using
the prediction error method:

ŵ = argmax
w

T−1∑
t=0

||St+1 − f(St, At;w)||22 (118)

Finding a policy can be done using classic control or model-free RL using the samples from the model.

8 Function approximation
Function approximation is a technique used for estimating the value function or policies for large or contin-
uous state-action spaces. It uses various machine learning models, such as decision trees, neural networks
or linear regression to generalize and predict values or optimal actions from a limited set of experience that
have been observed. Using function approximation, the agent can scale to more complex environments and
solve problems that are not suited for making tables of in tabular methods. When applying function approx-
imation one of the challenges are to balance the trade-off between generalization and accuracy, making sure
that the model accurately represent the underlying structure of the environment, but still being efficient to
learn from limited amount of data.

8.1 Repetition
What are we trying to do? We have a Prediction Problem prediction problem, for a given policy π, we
want to find the state-value function:

vπ(s) = Eπ[Rt+1 + γvπ(St+1|St = s)] (119)

We also have a Control Problem to find the optimal policy: π∗. We solve this by using Policy Iteration: for
a given policy π evaluate vπ(s) and do policy improvement:

π′(s) = argmax
a

qπ(s, a) (120)

Where qπ =
∑

r,s′ p(s
′, r|s, a)[r + γvπ(s

′)]

π0
E→ vπ0

I→ π1
E→ vπ2

I→ π2 . . .
I→ pi∗

E→ v∗ (121)

So far we have only considered finite state and action spaces. In these cases we can represent vπ(s) as an
array with |S| elements and we can also represent qπ(s, a) as a table with |S| × |A| elements. Example with
the gridworld:

UP DOWN LEFT RIGHT
0 X X X X
1 X X X X
...

...
...

...
15 X X X X

Table 3: example

We find an estimate of Q(s, a) by starting to fill in and then update the table with the estimates for each
state/action pair that we see. But How do we update the estimates of the estimated V or Q? If we
have observed:

St, At, Rt+1, St+1, At+1 (122)

We update the element that corresponds to (St, At) by using:
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New estimate← Old estimate + Step size[Target−Old estimate] (123)

True vf Target
For vπ vπ(s) = E[Gt|St = s] MC-target Gt = Rt+1 + γRt+2+...

For vπ vπ(s) = E[Rt+1 + γvπ(St+1)|St = s] TD-target Rt+1 ++γ(V (St+1)
For qπ qπ(s, a) = E[Rt+1 + γqπ(St+1.At+1)|St = s,At = a] SARSA-target Rt+1 + γQ(St+1, At+1)
For optimal q∗ q∗(s, a) = E[Rt+1 + γmax

a
q∗(St+1)|St = s,At = a] Q-learning target Rt+1 + γmax

a
Q(St+1, a)

Table 4: example

8.2 Function approximation
If we now consider a very large or continuous state space: S. The function approximation:

v̂(s,w) ≈ vπ(s)

q̂(s, a,w) ≈ qπ(s, a)
(124)

Here is w the unknown parameters or weights of the what we need to estimate. The number of parameters
in w is typically smaller than the number of states. Some generalization:

• A change in w may affect the value estimates of many or all states in S

• We get an estimate value even for states that we haven’t seen before.

There are many ways to approximate a function: decision trees, kNN, Gaussian process, linear regression
and so on. We will here focus on differentiable function approximators and especially: Linear combination
of features and neural networks. Good to know is that in Reinforcement learning is:

• The data is not independent and identically distributed (IID)

• Data distribution depends on the policy

• Every time the policy is improved, the distribution changes

• Hence, the data is Non-stationary

8.3 Linear function approximation
If we consider the approximation of vπ(s). We let a feature vector x(s) ∈ Rd associate with each s ∈ S. The
parameters of weights: w ∈ Rd

x(s) =

x1(s)
...

xd(s)

 ,w =

w1

...
wd

 (125)

Then we can estimate our v̂(s,w) by computing:

v̂(s,w) =

d∑
i=1

wixi(s) = wTx(s) = x(s)w (126)

Here are some examples of features (sometimes called basis functions):

• Physical consideration

• Polynomials

• Fourier basis

• . . .
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8.4 Stochastic gradient descent (SGD)
In gradient descent we let J(w) : Rd → R be a scalar valued function with a vector input. The aim is to
find a set of weights w that minimize J(w). We do this by using the gradient:

∇J(w) :=
∂J

∂w
:=


∂J
∂w1

...
∂J
∂wd

 ∈ Rd (127)

At a point w, J(w) is decreasing fastest in the direction −∇J(w). To minimize J(w) we start with an initial
guess of our weights: W0 and then we start moving in the direction of maximum descent with a step size α:

wk+1 = wk − α∇J(wk) (128)

This will push wk into a local minimum.

8.5 Value function approximation with SGD
We want to apply gradient descent to approximate vπ(s) with v̂(s,w). The idea here is to minimize:

J(w) =
1

2
Eπ[(vπ(s)− v̂(s,w))2] (129)

Where the gradient is:

∇J(w) =
1

2
Eπ[∇(vπ(s)− v̂(s,w))2] = −Eπ[(vπ(s)− v̂(s,w))∇v̂(s,w)] (130)

And we express the gradient descent with:

wk+1 = wk − αEπ[(vπ(s)− v̂(s,w))∇v̂(s,w)] (131)

(Here we find a problem: What if we cannot compute the expected value?). The full gradient descent with
all data:

w = w− αEπ[(vπ(s)− v̂(s,w))∇v̂(s,w)] (132)

If we instead draw a sample S form the on-policy distribution and use:

w = w− αEπ[(vπ(S)− v̂(S,w))∇v̂(S,w)] (133)

Then the expected update is equal to a full gradient update ("On average we update in the gradient descent
direction")

8.6 Linear function approximation
In the case of linear functions the update looks like this

v̂(s,w) = wTx(s)⇒ ∇v̂(s,w) = x(s) (134)

So the update will be given by:

w← w + α[vπ(S)− v̂(s,w)]x(S) (135)

In the case with a linear function approximation J(w) only has one optimum and thus any methods that
finds a local optimum also finds the global optimum, convex problem.
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8.7 Model free prediction
We want to estimate vπ(s) without a known model. By following a policy π to get some data: S0, A0, R1, S1, A1, . . . ,
and for each step we update or parameters or weights w.

w← w− α[(vπ(St)− v̂(St,w))∇v̂(St,w)] (136)

The problem is that: we don’t know vπ(St). One idea is to, as in the tabular case, replace vπ(St) with a
target Ut

w← w− α[(Ut − v̂(St,w))∇v̂(St,w)] (137)

If Ut is unbiased estimate of vπ(St) for all t, then w will converge to a local optimum, if assuming α decreases
according to the usual assumptions. The targets we have discussed earlier are: Monte-Carlo and TD.

8.8 Monte-Carlo prediction with function approximation
The Monte-Carlo target is: Gt = Rt+1 + γRt+1 + . . ., which is an unbiased estimate of vπ(St) = E[Gt|St].
The updates will look like this:

w← w + α(Gt − v̂(s,w))∇v̂(St,w) (138)

That will converge to a local optimum. With linear function approximation it will converge to the global
optimum. And as before, we have to wait until the end of the episode before Gt can be computed. Gt can
have high variance since it is a very noisy estimate of vπ(St), it also means that it can take very long to
converge.

8.9 TD-prediction with function approximation
The TD-target is expressed with: Ut = Rt+1 + γv̂(St+1,w) and is biased since it is based on the estimate v̂.
Hence the convergence cannot be guaranteed in general but it often works fine. In the case of linear function
approximations i will converge to global optimum. As in the tabular case with TD we will often learn faster
than with the MC approach and we also don’t need to wait until we have finished an episode. This methods
is some times called semi-gradient

∇(vπ(St)− v̂(St+1,w))2 = −2(vπ(St)− v̂(St,w))∇v̂(St,w) (139)

Here we use the fact that vπ(St) is independent of w. But we replace vπ(St) with the target Rt+1+γv̂(St+1w),
not taking into account that a change in w also changes the target.

8.10 Model-free control with function approximation
In this chapter we consider the case when the action space A is finite and small. The idea is to predict
using function approximation q̂(s, a,w) ≈ qπ(s, a) and policy improvement which is ϵ -greedy with respect
to q̂(s, a,w). Notice that if A is large the policy improvement can be hard to do. Here we will only consider
on-policy methods like MC and SARSA since an off-policy methods like Q-learning have several issues when
using function approximation.

8.11 Action-values with function approximation
We aim to approximate q̂(s, a,w) ≈ qπ(s, a) with the idea that minimizing J(w) = E[(qπ(St, At)−q̂(s, a,w))2]
with stochastic gradient descent:

w← w + α(qπ(St, At)− q̂(s, a,w))∇q̂(St, At,w) (140)

Replacing qπ(s, a) with the estimated target Ut (e.g. MC or TD) and as in the tabular case we must continue
to explore by using a policy that is ϵ-greedy with respect to q̂(s, a,w). Linear function approximations will
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converge for both SARSA and MC close to the optimal approximation of q. In the case of nonlinear function
approximations there is no guarantee of convergence, but will often work.

SARSA with function approximation

• Choose function approximation q̂(s, a,w) and an initial w
• For each episode:

1. Get initial state S
2. Choose A from S in other words: ϵ-greedy with respect to q̂
3. For each step in the episode:

– Take action A and observe R,S′

– Choose action A′ from S′, ϵ-greedy with respect to q̂

– Let Ut =

{
R, if S′ is terminal
R+ γq̂(S′, A′,w), otherwise

– w← w + α[Ut − q̂(S,A,w)]∇q̂(S,A,w)
– S ← S′, A← A′

Notice that in tabular SARSA we never update Q(S, a) for terminal states, so it will always be zero
if we initialize it to zero. However, for function approximation changes in w may affect all states,
including the terminal states, so we need to handle terminal S′ in a special way.

9 Policy gradient methods
Policy gradient methods are a class of model-free reinforcement learning algorithms that directly optimizes
the policy, maps the states to action by using gradient descent. By using gradient of the expected return
with respect to the policy parameters, these class of methods iteratively updates the policy to improve the
performance.

9.1 Value-based vs Policy based RL
The value-based RL methods are what we have looked at so far. Here we learn the value function and act
greedily (ϵ-greedy). In policy-based methods we don’t use a value function, but learn a policy instead. In
the next chapters we will take a look at Actor-critic methods were we learn the value function and policy.

Figure 2: Example of caption

9.2 Policy based methods
We parameterize the policy with some unknown parameters θ:

π(a|s, θ) = Pr{At = s|St = s, θt = θ} (141)
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Notice that in this course we will use θ for unknown parameters in policy and w for unknown parameters in
value functions. The aim is to learn these parameters θ from experience. For this we need stochastic policies
to get exploration. We will here assume that π(a|s, θ) is differentiable with respect to θ.

Example: Soft-max policies (discrete action spaces)

Soft-max policies can be used in discrete action spaces, if we let h(s, a, θ) denote our action preferences.
We can create a distribution so that preferable actions have a high chance of getting picked:

π(a|s, θ) ∝ eh(s,a,θ)

Being more specific the probabilities: the probabilities will sum to 1.

π(a|s, θ) = eh(s,a,θ)∑
b e

h(s,a,θ)
(142)

We can parametrize h(s, a, θ) either linear or non-linear. Where in the linear case we have: h(s, a, θ) =
θTx(s, a) and the non-linear being a neural network.

9.3 Random continuous variables
If we consider a scalar random continuous variable a. The probability density function p(a) describes "the
relative likelihood" that a random variable takes on different values:

Pr{zL ≤ a ≤ zH} =
∫ zH

zL

p(a) da (143)

The probability that a takes on any value is 1 so:
∫∞
−∞ p(a)da = 1 and the expected value and variance are:

E[a] = µ =

∫ ∞

−∞
ap(a) da

var[a] = σ2 = E[(a− E[a])2]
(144)

Example: Gaussian polices (continuous action spaces)

Gaussian policies can be used in continuous action spaces. If a is a scalar variable we can use

π(a|s, θ) = N (a;µ(s, θ), σ(s, θ)) (145)

If a is multivariate, then we use the multi-variate Gaussian distribution instead.

θ =

[
θµ
θσ

]
µ(s, a) = θTµXµ(s)

σ(s, θ) = exp(θTσ xσ(s))

(146)

In the case of a Neural network, it would take a as an input and output µ and σ

9.4 Why policy-based methods
So why do we use policy-based methods? In order to deal with high-dimensional and continuous action
spaces directly. We can by using these methods incorporate prior knowledge of the problem. It is possible
to adjust the variance and thus also the exploration over time with these methods. Previously we have
used for example ϵ-greedy for exploration, but in policy-based the agent can start of by exploring very
randomly but then over time adjust the parameters θ in order to approach a more deterministic optimal
policy. Policy-based methods can also learn a stochastic policy.
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9.5 Why have a stochastic policy?
Then the question of: why having a stochastic policy arise. For a Markov decision process there will always
be a deterministic optimal policy. For exploration it is possible to use ϵ-greedy like discussed earlier, but
this will not change the fact that the optimal policy is deterministic. However if we don’t observe the full
state s, then the optimal policy will not always be deterministic. One important case, if we use function
approximation, in other words: q̂(s, a,w) = wTx(s, a) then we only "see" the state through our features
x(s, a and may actually lose information ("State-aliasing")

9.6 Policy-gradient methods
If we let J(θ) : Rd → R be a scalar valued function with a vector input. We aim to find θ that maximizes
J(θ). For this we can use the gradient:

∇J(θ) := ∂J

∂θ
:=


∂J
∂θ1
...

∂J
∂θd

 ∈ Rd (147)

At a point θ, J(θ) increases fastest in the direction +∇J(θ̂) and the gradient ascent will there for be:
θ ← θ + αJ(θ), α > 0

9.7 What criterion to maximize?
We will here for simplicity assume that γ = 1, in other words no discount, so that the return will be
Gt =

∑T
k=t+1 Rk. In the RL course literature it is focused on episodic environments starting in s0 and use:

J(θ) = vπθ
(s0) = E[G0|S0 = s0] (148)

Other criteria will give a similar result, in other words, the average value

J(θ) =
∑
s

µπθ
(s)vπθ

(s) (149)

Here we encounter a challenge, a change in θ will affect:

• Action selection: Since π(a|s, θ) is known, we know how the changes in θ affects the action selection

• State distribution: However, how a change in θ affects the state distribution depends on the unknown
environment
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Example: One-step MDP

• Random starting state s ∼ d(s)
• Terminating after one action with the reward distribution p(r|s, a)
• State-values: since the next state is always terminating

vπθ
= E[R1|S0 = s] =

∑
a

π(a|s, θ)q(s, a) (150)

• Action-values:

q(s, a) = E[R1|S0 = s,A0 = a] =
∑
r

rp(r|s, a)π(a|s, θ)d(s) (151)

Note that the action-values do not depend on the policy, since the next state is always termi-
nating! This is NOT true for general MDP

• Criterion to maximize

J(θ) = Eπθ
[vπθ

(s)] =
∑
s

d(s)vπθ
(s) =

∑
s,a,r

rp(r|s, a)π(a|s, θ)d(s)

J(θ) = Eπθ
[vπθ

(s)] =
∑
s,a,r

p(r|s, a)π(a|s, θ)d(s)

∇J(θ) =
∑
s,a,r

[r∇π(a|s, θ)]p(r|s, a)d(s)

=
∑
s,a,r

[r
∇π(a|s, θ)
π(a|s, θ)

]p(r|s, a)π(a|s, θ)d(s)

=
∑
s,a,r

[r∇ lnπ(a|s, θ)]p(r|s, a)π(a|s, θ)d(s)

= Eπθ
[R1∇ lnπ(A0|S0, θ)]

(152)

In the third equality we used : ∇ ln f(θ) = ∇f(θ)
f(θ)

• Stochastic gradient ascent: Run with the policy πθ to get S0, A0, R1 and update:

θ ← θ + αGt∇ lnπ(A0|S0, θ) (153)

9.8 The policy gradient theorem
We now consider a general Markov decision process MDP again and let the criterion we want our policy to
maximize to be: J(θ) = vπθ

(s0)

The policy gradient theorem

If π(a|s, θ) is differentiable, then:

∇J(θ) = Eπθ
[qπθ

(St, At)∇ lnπ(At|St, θ)] = Eπθ
[Gt∇ lnπ(At|St, θ)], (154)

here the second equality follows since Eπθ
[Gt|St, At] = qπθ

(St, At)

9.9 Stochastic policy-gradient ascent (REINFORCE)
∇J(θ) = Eπθ

[qπθ
(St, At)∇ lnπ(At|St, θ)] = Eπθ

[Gt∇ lnπ(At|St, θ)], (155)

The Reinforce update will be:
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θ ← θ + αGt∇ lnπ(At|St, θ)

= θ + αGt
∇π(At|St, θ)

π(At|St, θ)

(156)

The interpretation: ∇π(At|St, θ) is the direction which we should change θ in to get most increase in the
probability of taking action At in state St. Each update scale this direction so that:

• Proportional to Gt

• Inversely proportional to the current probability of the action.

The REINFORCE update has good theoretical convergence properties. The expected value of update equals
the true gradient descent. It has high variance which may lead to slow learning, it is a Monte-Carlo method.

REINFORCE

• Choose differentiable policy parametrization π(a|s, θ)
• Initialize θ
• Loop:

– Follow π(a|s, θ) to generate an episode trajectory S0, A0, R1, S1, A1, . . . , ST−1, AT−1, RT

– For each time step t in the episode:
∗ Gt =

∑T
k=t+1 Rk

∗ θ ← θ + αGt∇ lnπ(At|St, θ)
This pseudo code is for γ = 1
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