Hyperspectral satellite imaging Digital imaging systems - 1MD130

Linus Falk

March 9, 2023

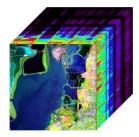
nus	

Hyperspectral satellite imaging

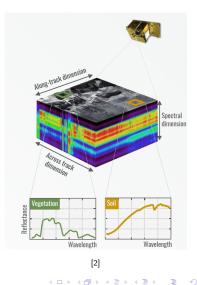
March 9, 2023

< A > <

→ ∃ →

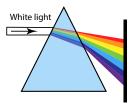

Introduction

- Spectroscopy of reflected light from earth surface
 - Passive technique
 - Acquires images in many spectral bands so for each pixel a reflectance spectrum can be derived
 - Important absorption features occur in the 400-2500 nm band (reflected solar radiation dominates natural EMS)



▲ 同 ▶ → 三 ▶

Introduction

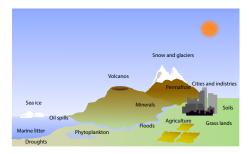

[1]



March 9, 2023

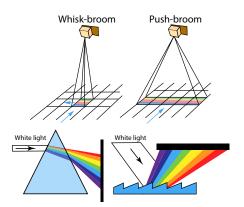
Brief History

- **1660** Division of light Sir Isaac Newton
- 1800-1820 Discovery of absorbtion bands - Joseph von Fraunhofer
- **1982** First imaging spectrometers - Jet propolsion lab (JPL)
- 2000 First spaceborne imaging spectrometers NASA EO-1
- 2022 Launch of EnMAP DLR



[2]

Use today & limiting factors


Used in research

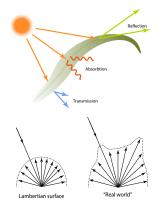
- Ecosystem processes
- Surface mineralogy
- Water quality
- Soil type and erosion,
- vegetation type and more...
- Global/National scale
 - Limited use for private sector
- Defence/military


How is the image formed

- Scanning:
 - Whisk-broom
 - Push-broom
- Dispersive optics:
 - Prism Spectrometers
 - Diffraction Grating Spectrometers
- Sensor types :
 - CMOS & CCD VNIR
 - MCT (Mercury Cadmium Telluride) -SWIR (Cooled)

< □ > < □ > < □ > < □ > < □ > < □ >

How is the image formed

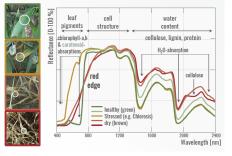


Linus Falk		

March 9, 2023

What property of the sample is imaged?

- Interaction radiation
 - Absorption
 - Reflection
 - Transmission
- Absorption processes
 - Electron transfer
 - Vibrational process
- Each material has a unique spectral characteristic


March 9, 2023

< ∃⇒

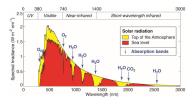
What property of the sample is imaged?

[3]

[1]

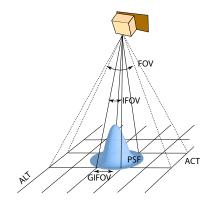
イロト イヨト イヨト イヨト

March 9, 2023


э

Atmospheric window

- At surface reflectance
- Top-of-atmosphere radiance
- Atmosphere absorption
 - Water vapor
 - Carbon dioxide
 - Ozone
- Atmospheric window largely transparent


[5]

March 9, 2023

10 / 20

Resolution and sample size

- Spatial resolution
 - Field-of-view (FOV) and Instantaneous FOV (IFOV)
 - Ground-projected instantaneous-field-of-view (GIFOV)
 - depends on the satellite elevation and varies with the viewing angle
 - Across-track (ACT) and along-track (ALT) resolution
 - affected by integration time and smearing effects

Resolution and sample size

- Spectral resolution
 - Portion of the **EMS** to which an instrument is sensitive
 - Hyperspectral imaging hundred of channels
- Radiometric resolution
 - Ability of the sensor to register differences in radiation
 - Typically 8 and 12 bit,
- Temporal resolution
 - Time between two acquisitions
 - Depends on satellite orbit
 - Vary greatly depending on cloud coverage

Hyperspectral sensor

Resolution and sample size

Imaging principle Groundsampling resolution
Strip lengths
Spectral range

Mean spectral sampling distance Radiometric resolution

EnMAP

Push-broom-prism 30m 30 - 1000km VNIR: 420 nm - 1000 nm SWIR: 900 nm - 2450 nm VNIR: 6.5 nm SWIR: 10 nm 14 bit

Table: EnMAP in numbers

1.1	nu	~ E	- 1	Ŀ
- LI	nu	51	aı	n

イロト イヨト イヨト ・

Calibration Correction

- Radiometric correction
 - Sensor data to physical unit
 - Use of calibration data
 - Linear transform
- Geometric correction
 - Sensor geometry to Object/Map coordinates
- Atmospheric correction
 - Atmospheric scattering
 - Absorption effect, adjacency
 - Illumination effect (terrain & clouds)

[2]

Cost and limiting factors

- Acquisition cost
 - EnMAP budget: 330 million euros
 - Five years of operations in orbit
- Data availability
 - Repeat interval
 - Historic and future data
- Open source project
 - EnMAPbox QGIS
 - Visualizing and analyzing EnMAP data

March 9, 2023

Variants and future use

- CubeSats constellation of miniaturized satellites
 - Better temporal resolution
- Agriculture
- Monitor hazard and risks

→ ∃ →

QGIS - EnMAPbox Demo

		《曰》《曰》《臣》《臣》 臣	500
Linus Falk	Hyperspectral satellite imaging	March 9, 2023	17 / 20

References I

 S. Foerster H. Kaufmann K. Segl L. Guanter A. Brosinsky, T. Kuester. *Principles of imaging spectroscopy, slide collection*. PEnMAP education initiative, 2019.

[2] S. Livens K. Segl T. Kuester H. Kaufmann L. Guanter S. Foerster A.Brosinsky, M. Brell. *Imaging spectroscopy sensor technologies, slide collection*. PEnMAP education initiative, 2021.

 [3] Contributors to Wikimedia projects.
Starr-120504-5544-Kanaloa kahoolawensis-leaves showing stress-nursery-Maui - Wikimedia Commons, May 2012.
[Online; accessed 7. Mar. 2023].

References II

[4] Contributors to Wikimedia projects.
ISS-40 Thunderheads near Borneo - Wikimedia Commons, August 2014.
[Online; accessed 7. Mar. 2023].

[5] Chabrillat, S.; Guanter, L.; Kaufmann, H.; Foerster, S. EnMAP Science Plan, October 2022. [Online; accessed 7. Mar. 2023].

 [6] Contributors to Wikimedia projects.
SpaceX Falcon 9 rocket and Crew Dragon spacecraft lifts off from Launch Complex 39A - Wikimedia Commons, May 2020.
[Online; accessed 7. Mar. 2023].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[7] Contributors to Wikimedia projects.

ISS-38 Nanosatellites deployment (a) - Wikimedia Commons, November 2013.

[Online; accessed 7. Mar. 2023].

nus	

3