Deep Learning for Image Analysis
DLA4IA — Report for Assignment 3

Student Linus Falk

May 13, 2023

Introduction

Third assignment in the course Deep learning for image analysis

1 Classification of hand-written digits using a Convolutional
Neural Network

Exercise 1.1 In this exercise we implemented the same neural network as in assignment 2. But this time
we used the PyTorch library and GPU support for training. The task was to compare the performance in
accuracy and training time. The weight were initialized in the same way as in assignment 2 and training
was done with the same hyperparameters, see table:1. As we can see in table 2 the accuracy performance
is very similar since the architecture and the training methods is the same. The difference between the
training times are on the other hand noticeably shorter for the PyTorch version. This is much thanks to
the GPU support, but also more effective data handling then the "homeCooked” version has. In 1 we
can see signs that the model is starting to overfit. The test loss has stopped to improve while the training
loss on the subset (6000 samples) of the training set is still improving. The model is overfitting to the
training data and if we would continue to train we would we decrease in performance on the test set.

Hyperparameters
BatchSize 30
Epochs 60

Ir 0.01
Optimizer SGD

Table 1: Hyperparameters Exercise 1.1

”"HomeCooked NN” PyTorch
Accuracy (%) 97.26 97.22
Time (sec) 289 22.28

Table 2: Result Exercise 1.1

Cost Accuracy

—— training cost 1.0 e
| —— test cost A
2.0 1 /
| 0.8+ /
‘ “‘
1.5+ |
|
0.6
| |
1.0+
|
1 0.4 4
|
0.5 *‘ [
MW 024+
- [—— accuracy
0.0 s test accuracy
T T T T T T T T T T T T
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Iterations Iterations

Figure 1: Training history: Assignment 2 Torch version, Accuracy: 97.22%

Ezercise 1.2 In this exercise we construct a convolutional neural network with the PyTorch library
according to the instructions. We compare the accuracy and number of weights between the Fully
connected and the convolutional NN in table: 4. Looking at the training history we can conclude that
this network doesn’t show the same signs of overfitting. The convolutional neural network has improved
accuracy with fewer trainable weights. By using the CNN we improve the accuracy be preserving the
spatial information and reduce the risk of overfitting by having fewer trainable parameters.

Hyperparameters
BatchSize 100
Epochs 60

Ir 0.005
Optimizer SGD

Table 3: Hyperparameters Exercise 1.2

Cost Accuracy
2.5 |\ —— training cost 1.07 T e e
—— test cost

; /4

201 0.8+
(

|

| |
154+

0.6 1

|

| |
1.0+ |

| 0.4+

| |
0.5 |

\\\ 024

\"-s, | —— accuracy
0.0 AR { —— test accuracy
0 5000 100001500020000250003000035000 0 5000 100001500020000250003000035000
Iterations Iterations

Figure 2: Training history Exercise 1.2, Accuracy: 98.35%

Architecture Accuracy (%) Number of weights
FF 97.22 109386
CNN 98.55 21688

Table 4: Result Exercise 1.2

Ezxercise 1.3 Here we are asked to swap place of the maxpooling layer and take the maxpooling before
the activation function instead. This will result in fewer connections to the activation function making
the time for calculating the activations fewer and therefore reducing the training time which we can see
in: Table 5. If we would use a more complicated activation function like the hyperbolic tangent the time
difference would increase. The worse accuracy in the swapped layer case can be caused by the fact that
we are passing on less information to the activation function.

CNN without swapped layers CNN with swapped layers
Accuracy (%) 98.55 96.87
Time (sec) 202 135

Table 5: Result Exercise 1.3

Cost Accuracy
1.0

T

—— training cost
et

M\
\ test cost
201 //

0.8

o /

0.6 1

1.0+ { ‘\
\ 041

0.5+)

[
W 024
M"“Ww.m | —— accuracy

WM W test accuracy

0.0+

0 5000 100001500020000250003000035000 0 5000 100001500020000250003000035000
Iterations Iterations

Figure 3: Training history Exercise 1.3

Ezxercise 1.4 To investigate how the choice of optimizer effects the training time, we are here asked to
use the optimizer: ADAM (with default parameters) instead of SGD and compare how much faster the
training becomes.ADAM is in many cases the best choice of optimizer and we can conclude from the
result of our test in Table: 7 that we need fewer epochs to achieve the same (or better) accuracy as SGD
when using ADAM. We can see that the training accuracy, in figure: 4 improving slightly more in the
last iterations compared to the test set, indicating that were starting to get some overfitting.

Hyperparameters

BatchSize 100

Epochs 15
Optimizer Adam

Ir 0.001

betas (0.9, 0.999)
eps le-8
weight_decay 0

Table 6: Hyperparameters Exercise 1.4

CNN trained with SGD CNN trained with ADAM
Accuracy (%) 98.55 98.69
Time (sec) 202 73

Table 7: Result Exercise 1.4

Cost Accuracy

—— training cost 1.0 T p————
test cost /
2.0+

0.8 1

154
0.6 11

1.0+
0.4

0.5+
1
0.2 1
— accuracy
4 . test accuracy

0.0

T T T T y T T T u u
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Iterations Iterations

Figure 4: Training history Exercise 1.4

Ezxercise 1.5 In this exercise we try out at least 3 different ways to improve our model by changing
for example architecture, learning rate or using different types of regularization methods. The result is
presented below with tables of changes for each model and performance measure. The result from the
best model is also presented with a confusion matrix of the test set.

Model 1: We increase the last, fully connected layers to 50 nodes to improve see if we can improve the
model with more learnable parameters. To reduce the risk of overfitting we also include a dropout layer
after this layer with a probability, p=0,25.

Hyperparameters
BatchSize 100
Epochs 10
Optimizer Adam
Ir 0.003
Result: 98.8%

Table 8: Hyperparameters Exercise 1.5, Model 1

Model 2: Including batch normalization layers between layers can improve the training by normalizing
the activation [2]. In this case it didn’t give major improvement since we didn’t have a problem with
vanishing or exploding gradients which it is commonly used to improve.

Hyperparameters
BatchSize 100
Epochs 10
Optimizer Adam
Ir 0.003
Result: 98.89%

Table 9: Hyperparameters Exercise 1.5, Model 2

Model 3: Here we change the learning rate strategy by changing the learning rate such that i depends
on the iteration number (i) with the function below [3].

/y(l) = Ymin + (’Ymax _ ’)’min)e fotalNumberOfterations (1)

We set Ymax = 0.003 and i, = 0.0001 and update it throughout the training.

Hyperparameters

BatchSize 100

Epochs 10

Optimizer Adam

Ir 0.003 - 0.0001
Result: 99.04%

Table 10: Hyperparameters Exercise 1.5, Model 3

Model 4: Here we simply combine model 1 and model 3. Increasing the number of nodes to 200 in
the final fully connected layer, add a dropout layer after that and then use the changing training rate
through the training. Even though we use the drop out layer we can see some indication of overfitting
in the training history, looking at the accuracy. The training accuracy continue to improve but the test
accuracy stays pretty much the same. Since this was the best performing model we also take a look at
the confusion matrix. Here we can see that the most miss-classification is done on the actual digit 9,
often being miss-classified as a 4, which is understandable considering the shape of the two digits.

Hyperparameters

BatchSize 100

Epochs 10

Optimizer Adam

Ir 0.003 - 0.0001
Result: 99.11%

Table 11: Hyperparameters Exercise 1.5, Model 4

Cost Accuracy
| —— training cost 1.01 ——
3.0 1 test cost (
2.5 1 0.8
|
2.04 ‘ |
0.6 1
1.54 ‘
11
1.0 0.4
\ |
054
0.29
\'\ —— accuracy
0.04 = test accuracy
T T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Iterations Iterations

Figure 5: Training history Exercise 1.5

Actual

Confusion Matrix

0.001 0.002

- 0.00088 0.00088 0 0.00088 0.00088 0.00088
-08
0 m 0 0 0 0.0058 0.0019
0 0.00099 m 0 0.004 0.00099 0.002
0.6
0 0 0 ﬂ 0 0.0031

0.0045 0 n 0.0011
0.4
0.0021 0.0031 0 0 0.0031 ﬂ 0 0.001
0 0 0 - 0.00097
0.2
0.0021 0.001 ﬂ

0.002 0.0059 0.003 0.0059 0.003

0.0
0 1 2 3 4 5 6 7
Predicted

Figure 6: Exercise 1.5 confusion matrix

Pred: 0 Pred: 4 Pred: 9

Pred: 9
True: 5 True: 9 True: 7

True: 8

Figure 7: Exercise 1.5 examples of miss-classification

2 Semantic segmentation of Biomedical images

Ezxercise 2.1 Modifying our previous neural network by removing the fully connected layers replacing
it with a 1 x 1 convolutional layer, we will now tackle a segmentation problem and evaluate it with
Segrensen—Dice coefficient as performance measurement. In Figure: 11 we can see the result from the
segmentation of a randomly picked test image. The segmentation models worst performance on the test
set is presented in Figure: 12. Here we can see that it seems like the specimen is ending abrupt in the
image, showing a lot of dark areas, presumably the ”"background”. Since this case is not well represented
in the training set it is not so surprising that it performed badly on this image.

Layer Input Channels | Output Channels | Kernel Size / Stride / Padding | Activation
Convl 2 8 3x3/1/1 ReLU
MaxPooll - - 2x2/2/0 -
ConvTransposel 8 8 x4 /2 /1 -
Conv2 8 16 3x3/1/1 ReLU
MaxPool2 - - 2x2/2/0 -
ConvTranspose2 16 16 x4 /2 /1 -
Conv3 16 32 3x3 /1 /1 ReLU
MaxPool3 - - 2x2 /2/0 -
ConvTranspose3 32 32 x4 /2 /1 -
Conv4 32 2 1x1/1/0 SoftMax

Table 12: Neural network architecture Exercise 2.1

Prediction

Prediction

Figure 8: Exercise 2.1: Segmentation of test-image: image_05.png,

Figure 9: Exercise 2.1: Segmentation of test-image: image_11.png

Exercise 2.2 We are asked to improve the model with various regularization techniques and other
methods that are presented throughout the course. When testing different hyperparameters we split up
the training set into a validation set and training set (20% and 80%), no mini batches. We train and test
the different hyperparameters with the validation set and when we decided on a good model we train it
with the whole training set and test it with the test set.

Hyperparameters

Epochs 150
Optimizer Adam
learning 0.003
Result: 0.76

Table 13: Hyperparameters Exercise 2.1

Model 1: We here try to increase the sparse training set by using the methods data augmentation. We
rotate each image -90 degrees and 180 degrees and add them to the training set before splitting it to a
validation and training set. Same architecture as in Exercise 2.1

Model 2: Here we change the learning rate strategy the same way as described in Exercise 1.5.

Model 3: Batch-regularization is used to normalize the data before the activation, improving the training
by avoiding vanishing or exploding gradients. We also add a learning schedule similar to model 2 in
exercise 1.5. This method showed best improvement on the validation set and was therefore best

Model 4-5: architecture:

Layer Input Channels | Output Channels | Kernel Size / Stride / Padding | Activation
Convl 2 32 3x3/1/1 ReLu
MaxPooll - - 2x2 /2/0 -
Conv2 32 64 3x3/1/1 ReLu
MaxPool2 - - 2x2 /2/0 -
Conv3 64 128 3x3/1/1 ReLu
MaxPool3 - - 2x2 /2/0 -
ConvTransposel 128 64 x4 /2 /1 -
Conv4 64 64 3x3/1/1 ReLU
ConvTranspose2 64 32 x4 /2 /1 -
Convb 32 32 3x3/1/1 ReLU
ConvTranspose3 32 4 x4 /2 /1 -
Conv6 4 2 x1/1/0 -

Table 14: Neural network architecture Exercise 2.2 model 4 & 5

Model 4: New architecture with the more classic ”wasp-waist” structure.

Model 5: The new architecture but with Batch-regularization layers.

Hyperparameters Model 1 Model 2 Model 3

Method Data Augmentation Learning Rate Scheduling Batch-normalization
Epochs 100 100 100

Optimizer Adam Adam Adam

learningRate 0.003 7@ 0.003

Result: 0.73 0.77 0.84

Table 15: Hyperparameters Exercise 2.1, Model 1

Hyperparameters Model 4 Model 5

Method - Batch-normalization
Epochs 100 100

Optimizer Adam Adam

learningRate 0.003 0.003

Result: 0.66 0.94

Table 16: Hyperparameters Exercise 2.1, Model 1

310.50

310.25

310.00

309.75

309.50

309.25

309.00

308.75

308.50

Looking at the training history for model 1-3 see no sign of overfitting the validation set. In the case of
model 4 it seems to having problem with vanishing gradients being a much ”deeper” than the previous
design. The batch normalization in model 5 seems to solve some of the problems. Taking the model 5
setup and training it with the whole training set and test it on the test set resulted in a dice coefficient
of: 0.82. Looking at the training history we can see that the training loss is still reducing but the test
loss is not, indicating that it has stopped improving in terms of generalization and started to overfit.
Interesting to notice is that the result from exercise 2.1 seem to be better at identifying the individual

— training loss
validation loss 310

— training loss
validation loss.

— training loss
validation loss

(b) Model 2

(c¢) Model 3

— training loss
3100 vaildation loss

3075

305.0

3025

300.0

297.5

—— training loss

295.0
vaildation loss

— training loss
test loss

(d) Model 4

(e) Model 5

glands (if we were to count them) even though it scored lower in the the test.

Prediction Label

20

40

100

[Yo

100 0 50 100

Figure 11: Exercise 2.2: Segmentation of test-image: image_05.png,

Prediction

Figure 12: Exercise 2.2: Segmentation of test-image: image_11.png

(f) Model 5 on training & test set

Ezxercise 2.3 To further improve the network was the network converted to U-net design with skipped
connections where the activations/feature channels are concatenated with filters ”across” the network,
passing spatial information from lower layers to the higher [4]. The new design is presented in Figure:
13a. We can see in the result in Figure:14 and 15 that it captures the boundaries of the glands better
than the previous models, much closer to the label boundaries and not as lumped together. The dice
coefficient score was 0.83 for this U-net implementation. There is still room for improvement but we
can see some clear benefits using the U-net design. Inspecting the training history in Figure: 13b we can
see that the training loss is still decreasing but the test loss is not, starting to overfit the model to the
training data. The model was trained with the same hyperparameters as model 2 in exercise 2.2.

128

128
—— training loss
310 test loss
308

2 32 32432

64 304
) l"l] ll;’ -
300
MaxPool
E7) 64 32 A 64464 W Conv 298
-
294
64 128 64 0 25 50 75 100 125 150 175 200
(a) Exercise 2.3: U-net architecture (b) Exercise 2.3: U-net training history
Figure 13

Prediction

Figure 14: Exercise 2.3: U-net segmentation of test-image: image_5.png

Prediction

Figure 15: Exercise 2.3: U-net segmentation of test-image: image_11.png

10

Ezxercise 2.4 The network was then converted to ResNet design with additional convolution layers and
skipped connections. The skipped connections help reduce the risk of vanishing gradients, making it
possible to construct deeper networks [5]. The architecture is presented in Figure: 16a. This was the
best model so far with a Dice coefficient of 0.84, training history is presented in Figure: 16b. Looking
at the example images we can see that this much deeper network does a much better work of segmenting
the glands and also performs better with the ”"background” image, see Figure:18. The boundaries are not
as good as in the U-net version should be noted. This is expected since U-net is a more segmentation
specific design. Again, inspecting the training history in Figure: 16b we see the gap increasing between
the training and test loss, indicating that we are overfitting. The skipped connections was then removed
to compare the training time between the architectures, see figure: 19. No major difference can be seen,
and this can be caused by multiple factors like: architecture not deep enough to see benefits, learning
rate not properly set and other hyperparameters not ideal for the network. In this case it is probably do
to that the network is not especially deep. Model was trained with the same hyperparameters as model
2 in exercise 2.2.

MaxPool
W Conv
W Transp.Conv 315

128
128 64 1
e B 310 4
64 32
Al
2 32 32 32 32 64 64 64 64

—— training loss
test loss

=

305

300 1
5

128
128
; o’ N B
64 2951
- B
0 20 40 60 80 100
128 128 128 64 64 64 32 32 30 2

(a) Exercise 2.4: ResNet architecture (b) Exercise 2.4: ResNet training history

w0

Figure 16

Prediction

Figure 17: Exercise 2.4: ResNet segmentation of test-image: image_5.png

11

Prediction

Figure 18: Exercise 2.4: ResNet segmentation of test-image: image_11.png

312.5 4 —— training loss
test loss

310.0 1
307.5 1
305.0 +
302.5 A
300.0

297.5 1

295.0 1

T
0 20 40 60 80 100

Figure 19: Exercise 2.4: ResNet training history

References

[1] Philip K. Dick (1968). Do Androids Dream of Electric Sheep?
[2] Tan J. Goodfellow, Yoshua Bengio and Aaron Courville (2016). Deep Learning

[3] Lindholm, Andreas and Wahlstrom, Niklas and Lindsten, Fredrik (2022). Machine Learning - A First
Course for Engineers and Scientists

[4] O. Ronneberger, P. Fischer, and T. Brox (2015). U-Net: Convolutional Networks for Biomedical
Image Segmentation.

[5] K. He, X. Zhang, S. Ren, and J. Sun (2016). Deep Residual Learning for Image Recognition.

12

	Classification of hand-written digits using a Convolutional Neural Network
	Semantic segmentation of Biomedical images

