
Learning to play Pong with DQN

Group 21 - Linus Falk

May 28, 2023

1 Introduction

This project is part of the Reinforcement learning 7.5c course at Uppsala University. We are asked to
implement the Deep Q-network that was first introduced by Mnih et.al [1]. In order to simplify the
work and debugging of the code we were first asked to implement it in a simple environment such as the
CartPole and after that move on to the more challenging Pong environment [2].

2 Deep Q-network (DQN)

Deep Q-network is a Reinforcement learning algorithm that combines the use of neural networks and the
classic reinforcement learning technique, Q-learning. In Q-learning the agent learns the Q(s,a) function
which estimates the total reward that can be obtained by taking an action a in state s, where a ∈ A
and s ∈ S, the action and state spaces. This function can be solved by using the Bellman equation
when the state and action spaces are small [3]. However, in most application that is not the case and we
most use function approximation instead of a matrix of action and states. Using deep learning methods
is one way to solve it could be hard to train since the most deep learning algorithms expects that the
data samples to be independent of each other, this is not often the case in Reinforcement learning. To
overcome the obstacles of using deep learning methods to model more complex action spaces was these
solutions proposed [1].

• Experience Replay

• Target network

In order to solve the correlation problem was the Experience replay introduce that stores sequences
of state, action, reward and next state. When training the replay buffer is sampled to update the
network which helps to break the correlation between consecutive samples[1]. The Target network was
introduced to stabilize the training that was often unstable when generating the target with the same
model that could affect the action values for the next step leading to catastrophic forgetting of learning.
By using a model that is not updated immediately and uses old parameters it was possible to get more
stable training [4]

3 Cartpole-v1

The Cartpole model was implemented using the Gymnasium tool kit for Reinforcement learning and with
skeleton code provided by the instructor. The neural network was in this case very simple, see table: 1:

1

Layer (type) Input Shape Output Shape
Linear 1 4 256
ReLU

Linear 2 256 2

Table 1: Neural Network Architecture

The model was then trained with different hyperparameters to see how it affected the training and result.
The hyperparameters common for all model are presented i table: 2 and the hyperparameters that was
change are presented in table: 3. To evaluate the training was the training stopped and evaluated
periodically and tested for 5 times and the mean return was then plotted over the course of the training.
The average return of these evaluations during training are presented in figures: 1a to 1e.

Hyperparameter
memory size 50000
n episodes 1000
batch size 32
lr 1e-4
train frequency 1
gamma 0.95
anneal length 104

n actions 2

Table 2: Hyperparameters for CartPole-v1

Hyperparameter Model 1 Model 2 Model 3 Model 4 Model 5
target update frequency 100 5 150 100 100
gamma 0.95 0.95 0.95 0.95 0.95
eps start 1.0 1.0 1.0 0.5 1.0
eps end 0.05 0.05 0.05 0.05 0.5

Table 3: Hyperparameters for CartPole-v1

Discussion

Looking at the return plots of the different models we can see that reducing the target update frequency
(in model 2) lead to a better model with higher return. The correlation problem was perhaps not that
big in this simple environment, but we can see some tendency that it fluctuates more than the previous
model. Dialing the target update frequency up showed instead that the training became too slow/stable
and didn’t learn enough the environment to improve. In model 4 and 5 the exploration strategy’s was
changed by changing the probability for exploration during the training. Model 4 with less experience in
the beginning show slower progress than model 1 which is expected. Model 5 on the other hand keeps
a high degree of exploration and is instead not able to find a more optimal policy do to this, giving it a
smaller overall return than model 1 and 2.

The implementation of this environment was straight forward with the skeleton given and easy to under-
stand #TODO’s. Some problems and perhaps a deviation from strategy thought of the instructor was
done with the masking of the terminating states. Here was an integer introduce to ”mask” the terminated
samples. A simple mistake of not updating state to the next state in the end of the training loop gave
more headache than i should.

2

(a) Model 1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5

1 obs = torch . t en so r (obs) . to (dev i ce)
2 next obs = torch . t en so r (next obs) . to (dev i ce)
3 ac t i on = torch . t en so r (ac t i on) . unsqueeze (0) . to (dev i c e)
4 reward = torch . t en so r (reward) . unsqueeze (0) . to (dev i ce)
5

6 i f terminated :
7 t e rminated boo l = torch . t en so r (1) . unsqueeze (0)
8 e l s e :
9 t e rminated boo l = torch . t en so r (0) . unsqueeze (0)

10

11 memory . push (obs , act ion , next obs , reward , t e rminated boo l)
12

13 ###########
14

15 Q target s = concatenated reward + (dqn .gamma ∗ max next q va lues ∗ (1 −
concatenated terminated))

4 Atari - Pong

The next step was to train a model for the Atari-Pong environment. The code from the previous environ-
ment could mostly be reused but new hyperparameters that would ”guarantee” a reasonably good training
was given, see table: 4. The Neural network was also updated to a Convolutional Neural Network, CNN.
The architecture is presented in figure: 2.

Hyperparameter Value
Observation stack size 4

Replay memory capacity 10000
Batch size 32

Target update frequency 1000
Training frequency 4
Discount factor 0.99
Learning rate 1e-4
Initial epsilon 1.0
Final epsilon 0.01
Anneal length 106

Table 4: Hyperparameters

3

Conv

8
8

4

32

4
4

64

3
3

64

84

84

2

3136

512

UP
DOWN

Flatten

Figure 2: CNN architecture

Figure 3: Neural network architecture

Discussion

The most challenging part of this part was to get the stacking of the sequence of images that was collected
from the environment and save them to the replay memory correctly. But the instructions given in the
task helped and the problem was solved eventually. After overcoming these minor obstacles the work was
not that difficult until it was time to start to test. One of the challenges was to see if it was correctly
implemented and actually could improve its policy. The training took typically around 5-6 hour training
it on a Nvidia RTX3060, with not much improvement the first 5-10 minutes. The result is present in
figure: 3. The episode on the x-axis is the number of the evaluation episode that was done every 25th
normal episode.

References

[1] Volodymyr Mnih and Koray Kavukcuoglu and David Silver and Alex Graves and Ioannis Antonoglou
and Daan Wierstra and Martin Riedmiller (2013). Playing Atari with Deep Reinforcement Learning

[2] Brockman, Greg and Cheung, Vicki and Pettersson, Ludwig and Schneider, Jonas and Schulman,
John and Tang, Jie and Zaremba, Wojciech (2016). Openai gym

[3] Richard S. Sutton and Andrew G. Barto (2018). Reinforcement learning - An introduction

4

[4] Mnih, V., Kavukcuoglu, K., Silver, D. et al (2015) Human-level control through deep reinforcement
learning.

5

	Introduction
	Deep Q-network (DQN)
	Cartpole-v1
	Atari - Pong

