Computer Graphics 1IMD150 - Project
Ray tracing

Linus Falk

Background'

Figure 1: Concept and result

Ray tracing

Ray tracing is a computationally heavy problem to
solve, but it offers more realistic lightning (global illu-
mination) for a scene than most other lightning tech-
niques. Although the process is quite straightforward,
being recursive, most of the computation lies in calcu-
lating the intersections between objects and rays. The
recursive stop condition occurs when the the ray no
longer intersect any object and only the background
color is returned, or when the ray hit the lights source
and the color of the light source is returned. The ray
intersections with objects can absorb the ray or create
a new which pick up the color of the object depend-
ing on the objects material properties. By attenuating
the color along the ray path from interactions, until it
stops by the stopping conditions we get the pixel value
of the output pixel [1].

Implementation

In this project we implement the ray tracing concept
presented above using the CPU for computing the rays
and interactions, only utilizing the GPU for rendering
the final image. The work was based on the meth-
ods in the online book "Ray tracing in one weekend"
[2]. The concept above gives an overall good start but
to further improve the aesthetics of the result one can
start by implementing an anti-aliasing filter to re-
move the sharp pixelated edges. This was done by
averaging multiple samples of each pixels and adding
a random intensity to each sample giving us a blurred
and more realistic edges.

"-"'

Anti-aliasing: OFF

Anti-aliasing: ON

Material properties control the behavior of the ray
when hitting an object. We implemented two types of

materials: Diffuse (Lambertian) and Metal (mirror
like). When an incoming ray hit the diffuse objects’s
surface, it takes the incoming ray and randomly scatter
it to a new random direction, picking up the color of the
object in the process by loosing energy (attenuation).
A mirror like metal surface simply reflects the incoming
ray according the the incoming angle and the surface
of the object. Adding a brushed finish to the metal
property was simply done by adding a weighted term
of a random direction for the reflected ray. By chang-
ing the weight (fuzz) we can control how "brushed"
the metal is. For easier demonstration of the material
properties was a GUI implemented for changing the
parameters color and fuzz. When starting to reflect
and redirecting rays with new materials we need to
handle the recursive depth of the ray casting process.
By setting a GUI controlled variable, we can control
the number of bounces and see the effect of computing
time. In the introduction, was the computational cost
mentioned. One way to reduce this is by incorporating
bounding volumes into the solution. Bounding vol-
umes act as a check to see if a ray is going to hit a more
complexed-shaped object. If not, it will simply return
the background color and we don’t need to check which
polygon in the object that could be hit. Comparison
with the "bunny" object with and without a bound-
ing volume (sphere) yielded a 2 times faster rendering
time for the first 5% of the image with the bounding
volume. The final step in order to get a more color
accurate image is to implement gamma correction for
the display. This was done in the fragment shader with
the choice of toggling it on and off in the GUI.

References

[1] David Shreiner Edward Angel. Interactive
computer graphics: a top-down approach with
shader-based OpenGL. Pearson - Addison-Wesley,
2022.

[2] Peter Shirley. Ray tracing in one weekend,
December 2020. https://raytracing.github.io.



